Multi-Continuation Pushdown Analysis
Technical Report

Kimball Germane and Matthew Might

University of Utah

1 Abstraction Soundness

Theorem 1 (Simulation).
If ¢ = <’ and [c|eq C &, then there exists <" such that ¢ ~~ < and [¢'|qq E ¢

Proof. By cases on .

1. Case ¢ = UE:
UE = ((fqur)'ya Buvﬁka St» ve,t) and
UE = ((feqt),, st,h) where
|ve|ca T hso|proc = Ay (f, Bu, ve)|ca E fi(f, h) 3 ulam and |d = Ay (e, By, ve)|ca T
Ale, h) = d;
c = Ak(q, Bk, st), reconstruct(CP (), B, st) = st, and Lemma 1 so pop(e, (Bu, Br)
st) = st', (q, sAt/) = reconstruct*(e, st'), and (g, 31) = pop(q, st);
so |(proc, d, e, st', ve,)| cq C (ulam, d, g, ﬁf/,h)
2. Case ¢ = CE:
CE = ((q €)y, Bu, Bk, st, ve,t) and
CE = ((ge), st, h) where
|ve|ea C hoso |d = Ay(e, By, ve)|eca E A(e, h) = d;
(ep, fr) = ¢ = Ai(q, Bk, st), reconstruct(CP(v), B, st) = st, and Lemma 1
so pop({c), (Bu, Br) :: st) = st’', ({cp), Ql) = reconstruct™({(cp,|st])), st’),
and ({cp), st') = pop((a),)
so |(ep,d, st',ve,t')|ca C (cp,d, st, h)
3. Case ¢ = UA:
UA = (proc,d, ¢, st, ve,t) and
UA = (ulam, d, g, st, h) where
|proc|cqe = {ulam = (X (wk™) call), },
(4, 5t) = reconstruct*(c, st) so reconstruct(CP(call), B, st) = reconstruct(k, [k
c,st) =k~ q:: st = &I, and
|ve|cq C h and |d|cq C d 50 |v€'|ca = [ve](u, ') = d]|eq = |ve]cq U|[(w,) —
d|ca ThU[u—d)=h
so |(call, Bl,, Br, st,ve';t')|ca E (call, 535/, h')
4. Case ¢ = CA:
cA = (clam,d, st,ve,t) and
ca = (clam, d, st, h) where

clam = (X (u) call),

((ep), st) = reconstruct™({(cp, |st])), st), and

|v€| g T h and |d|cq T d 50 |v€'|ca = ve](u, ') = d]|eq = |ve|cq U|[(w,) —
dlca ThUlu— d]CH ~

so |(call, B, B, st,ve',t')|ca T (call, st,h’)

Definition 1 A stack st is well-formed if, for every continuation environment
B at stack level n, the frame pointer fp of each continuation c in By is less than
n.

Lemma 1. Suppose |UE|,, C UE where UE = ((f eq™), Bu, Bk, st, ve,t) and UE
is well-formed. If k = CP(v), Ax(q, Bu, st) = ¢, reconstruct(k, By, st) = st, and
pop(c, (Bu, Br) :: st) = st’, then reconstruct™(c, st’) = pop(q, st).

Proof. By induction on st.

1. Base case st = ():
reconstruct(k, B, () = [k — halt] = () < reconstruct*((halt,0),()) =
(halt, ())
If g = K/, then pop(e, (Bu, Br) == () = pop((halt,0), (B, Bk) = () = () and
reconstruct™((halt, 0), ()) = (halt, ()) = pop(k’, [k — halt] :: ()).
Otherwise, pop(c, (Bu, Br) = () = (Bu, Br) == () and reconstruct* (e, (Bu, Br) ::
()) = (g, [k — halt] :: ()) = pop(q, [k — halt] :: ()).
2. Inductive case st = (8, 8},) = sti: R
reconstruct(k, Br, (By, By,) = sti) = [k > q] sty < reconstruct™(c, sty,) =
(qA7 Stk)
If ¢ = K/, then pop(c, (Bu, Br) = (8., 5;) = stx) = pop(c, (B, 5;,) == stg) =
sty and reconstruct®(c, st,) = (q, sAt;c) = pop(K/, [k — q] :: sty).
Otherwise, pOp(C, (Buaﬂk) = (':L’/Bllc) = Stk) = (ﬂuvﬂk) o (aiuﬁ;c)/\ sty
and reconstruct™ (e, (Bu, Be) = (By: By) + stk) = (q,[k — halt] = sty) =
pop(q, [k — q] == sty).
The following lemma establishes that calls are more conservative than exits:
a user call with a continuation argument ¢ will pop at most as many frames as a
continuation call with operator ¢; moreover, the positional continuation mapping
is preserved on the stack.

Lemma 2 (Conservative Pop).

Let ¢ = mi(q). If pop((d), st) = ((clam), sto) and pop(q, st) = (¢, st), then
— ~ ~/ ~
pop((mi (@), st) = ({clam}, sto).

Proof. By cases on q.

— Case ¢ = clam: By definition, pop(q, st) = (g, st). Then pop((m;(¢')), 535/) =
pop((mi(4)), st) = pop((a), st) = ((clam), sto), by assumption.

— Case ¢ = k: By induction on whether m;(¢) = clam for some i. If so,
then pop(q,st) = (g, st). If not, then pop(q,st) = pop(g,sm :: 55//) =

~1

pop(sm(q), st) and the result follows by induction.

Lemma 3 (Conservative Path).
Suppose UA =, CEE by n where UA = (ulam, d,q,st, h) and CV(CEE) = k.

1f pop((mn(@)), 5t) = ({(clam), st'), then pop((k), stese) = ({clam), st).

Proof. By induction on the definition of - =, - by -.

1. Case p = UA ~» ¢ ~* CRE: By UA ~ &' st = sm i sty, where sm(k) =
7n(q) where CP(Ua,k) = n. By Lemma 5, stuy = sm : stgy. Then
pop({k), stCEE) = pop((k), sm :: sty,). By definition, pop((k),sm sAtLAA) =
pop((sm(k)), StUA)' By the above, pop({sm(k)), stun) = pop((mn(q)), stua)-
By assumption, pop((m,(q)), ste) = ({clam), @l)

2. Case p = UA ~ ¢ ~* UE ~ UAg ~T CEE where the operator of UA
is (Ap (wky ... kn) call), the call of UE is (feq ... qng)y, and UAg =,

CEE by ng:
Let ¢ = {q1,...,qn,). By UA ~ g ster = sm :: sty where sm(ky) = Wn((j).
By Lemma 5, sty = sm @ sty,. By assumption, pop({Tny (G)), stUF) =

pop((kn), sm :: QUA) By above pop((kn), sm : St%) = pop(sm(k,), stUA).

By assumption, pop({sm(k,)), stUA) = pop((mn(§)), sty). By definition, UE ~
(ulamo, dO; dO? Sth hO) where (dOa StO) = W(q/7 StIfE)' B}; Lemma 27 W(<7TTL0 (d0)>7 Sto) =
({clam), st). By induction, pop((k), stege) = ({clam), st).

Lemma 4 (Same Stack)
If p = UE ~ UA ~»T CEE ~ ¢ _where cally, = (feqr ... gn ... qN)es Gn €
CLam, and UA =, CEE by n, then stA = sm :: st and stUE = sm :: st.

Proof. Let g = {(q1,...,qn) so that m,(q) = clam. By UE ~ UA, if S7(f), Then
pop(mn(q), st) = pop({clam), st.s,) and, by definition, pop((clam), sty,) = ({(clam), st).
By CEE ~ ¢, ¢ = (clam/, d, st, h) where ({clam’), st) = pop({CV (CEE)), stgy)-

By the above and Lemma 3, pop({CV (CEE)), stogs) = ((clam), sty).

Lemma 5 (Single Frame). If p = UA ~T ¢, then there exists sm such that,
for all ¢, if UA = CE,(¢), then st: = sm :: sty,.

Proof. By induction on the definition of CE),,.

1. Path composition doesn’t satisfy the premise.
2. By induction on |p|.
(a) Base case of p = UA ~0 ¢’ ~ ¢ UA = CE, (<) holds by definition of ~;
instantiate sm thereby.
(b) Inductive case of p = UA ~T ¢ ~» ¢ where UA = CE »(&), ¢ ¢ UEwal,
¢ & CEvalExit, and ste = sm :: styy: ste = sm = sty by cases of ¢’ in
¢~ ¢
3. By induction, sty = sm :: sty,. By Lemma 4, sAtg = sm :: sty

2 Local Simulation Soundness

Lemma 6 (Local Simulation Soundness).
If ¢ ~ ¢ and suce(|$|a) # 0, then |&'|a € suce(|$]ar)-

Proof. By cases on <.
The heap is simply carried over from the abstract domain and is updated in
the same way in each Apply transition; we will not discuss it further.

1. Case ¢ = ((A\y (u1 ... up k1 ... k) call),d, g, st, h):
In the abstract, we have ¢ ~ (call, @l, h') where st = sm st
Locally, we have succ(|<|q) = suce((ulam,d, h)) = {(call, ')}. Since [¢’| o =
(call, h"), we get |<'|ar € {ISar}-

2. Case<=((fer1 ...enq1 .. qm)v,{a‘,h):
In the abstract, we have ¢ ~ (ulam,d, q, 55/, h) for ulam € A(f, h) where
d = (di,...,dy) for d; = A(e;,h) and (§',5t)) = pop(d,st) for § =
(G1y- -+ Gm)- A
Locally, we have succ(|S|q1) = suce(((fer ... enqi ... Gm)y, b)) = {(vlam,d, h) :
ulam € Ay, (f,7)sth} = {|(ulam,d,§’, st h)|ar : ulam € A,(f,~)sth} where
d= (31, . ,czn> for d; = A (ei,v)h.
The sets are identical.

3. Case ¢ = ((\y (uy ... up) call),d, sm :: st, h):
In the abstract, we have ¢ ~~ (call, sm :: st, h') where d= (cfl, ce zfn>
Locally, we have succ(|¢|a) = suce((clam,d, h)) = {(call,h')} where d =
(dy,...,dy). Since [¢'|o = (call, 1), we get [¢'|ar € {|']ar}-

4. Case ¢ = ((clamey ... e,),st,h):
In the abstract, we have ¢ ~ (clam7d,sAt,h) where d = <¢Zl7...,dn> for
d; = A(e;, h) since ((clam), st)) = pop({clam), st).
Locally, we have succ([$|q) = succ(((clamer ... en)y, h)) = {(clam,d, h)}
where d = (dy,...,d,) for d; = Ay (e;,y)h. Since ||, = (clam, d, h), we get
(<"1 € {1¢" at}-

5. ¢=((ke1 ... en)y, h):
succ(|S]ar) = 0 so the premise doesn’t hold.

3 Local Simulation Soundness

Lemma 7 (Local Simulation Completeness).
If ¢ — ¢, then, for each ¢ such that & = [|q, there exists &' such that
=" and S~ <.

Proof. By similar arguments as the proof for local simulation soundness.

4 Path Decomposition

Lemma 8 (Path Decomposition).
All paths can be decomposed as follows:

1. If p = Z(pr,d) ~* CEE, then p = Z(pr,d) ~° UA; ~t UB ~» ... ~»
UA,, ~T UE, ~ UA ~T CEE where UA; = CE,(UE;) and UA =, CEE by m
for some m and the mth continuation argument of UE, is some clam.

2. If p=Z(pr,d) ~* ¢ where ¢ & C%Z\Exit, then p = Z(pr,d) ~° UA; ~T
UE; ~ ...~ UA, ~1 UE, ~ UA ~* ¢ where UA; = CE,(UE;) and UA =
CE,(9).

Proof. By induction on [p|.

— Base case p = f(p?:,ci) ~0 7A: The path matches form 2 with n = 0. By
definition of CE,, Z(pr,=)CE,(UA).

— Inductive case p = i’(pr, (i) ~* ¢ s ¢ By cases on <.

1.

Case ¢ = UA: Then ¢ = UE and we have Z(pr,d) ~° Ua; ~T Ug,

.~ UA, w1 UE, ~ UApyr ~T ¢ Then for UB,11 = ¢, p
j'(pr,ci) 0 UAAl ~F UAEl S S 4 UAAn ~t UAEn ~ UAAn_H >
UEn41 ~» UA ~* ¢ with UA,41 = CE,(UE,41). By definition of CE),
we have UA = CE,(S). Thus, p matches form 2.

s

+ |

. Case ¢ = CA: By cases on ¢'.

(a) Case ¢’ = chr: We have Z(pr,d) ~0 UAy ~»T UE; ~» ...~ Ua, ~F
UE,, ~» UA ~»* CEL By definition of CE,, we have UA = CE,(J).
Then p = i(pr,d) 0 UA] ~T UE] ~ ... ~ Ua, w1 UE, ~
UA ~»1 dA. Thus, p matches form 2.

(b) Case ¢’ = CRE: We have Z(pr, d) ~0 UA; ~»+ UBy ~ ... ~» UA, ~+
UE, ~» UA ~* CRE. By Lemma 4, p = Z(pr,d) ~° UA; ~+ UE; ~

.~ UA,, ~T CA where UA,, = CE,(CA). Thus, p matches form 2.

. Case ¢ = UE: Then ¢’ = A and we have Z(pr,d) ~° UA; ~T UE; ~»

.~ UA, ~1 UE, ~ UA ~* A. By definition of CE,, U = CE,(E).
By definition of ~, p = Z(pr,d) ~° UA; ~»T UE;] ~» ... ~» UA, ~+

UE,, ~ UA ~»T UE. Thus, p matches form 2.

. Case ¢ = CEI: Similar to previous case.
. Case ¢ = CEE: For m = CP(UA, CV(CEE)), we have UA =, CEE by m.

By induction on n.

(a) Base case UA; 41 =, CEE by m;41 and CA(UE;,m) € CLam: Then
p= f(pr,ci) A0 UAAl st [fEl ML UAAi ~t UAEZ» ~ UAAZ-+1 st
CEE.

(b) Inductive case UA;41 =, CEE by m;4q1 and CA(UE;, m;4+1) € CVar:
Then UA; =, CEE by m; for m; = CP(UA;, mit1).

5 Path Normalization

Definition 2 (Push Monotonicity) A path p = UA ~»* ¢ is push monotonic
if stya 18 a suffiz of ste for each &' in p.

For p = UA ~*1 CEE, even if UA =, CEE by n, p isn’t necessarily push
monotonic: a tail call within might pop the stack below the point of entry.
However, such a path can be normalized to remove incidental stack, and the
result is push monotonic.

Definition 3 (Path Normalization) F(p) = Fi(p,()) for p = UA ~T1 CEE
where UA =, CEE by n

Fy(p,st) = Fy(p, st, ﬁ‘/, (halt, ..., halt)) where p = UA ~T CEE and UA =
(ulam,ci,tj, ﬁl, h) where |q| = |{halt, ..., halt)|

Fy(p, st, st', @) = Go(UA, st, 5t , ') ~+ Go(ChE, st, st ,§') if UA = CEepy()
where p = UA ~1 CEE

Fy(p, st, st', @) = Go(UA, st, 5t ,§') ~+ Go(Us, 5t, 5t , §') ~ Fs(p', st, 51, §')
if UA = CE () where p = UA ~T UE ~ p'and p' = Uag ~»T CEE where
UAg =, CEE by ng

Fs(p, st, Qf/,d) = Fy(p, st, sAt/,(j) if st isa suffiz of sty where p = UA ~T
CEE

Fs(p, st, Qf/,d) = Fi(p, () if st is not a suffiz of sty where p = UA ~»T CRE

Gy ((ulam, d, g, st, h), st, (g%/,(j') = (ulam,d, §, sAt/,h)

Ga((... sto,h), st st @) =(...,st" h)

st =fryueunfr, o frl st'
fr'" = sm”
sm”:[k1'—>ﬁi,-~-,km'—>‘j;n]
&= df i) A
sm = [k1 = i, km = G
fr=sm

sto=fry oo fr, frost

Lemma 9 (Stack Irrelevance).
If p = UA ~T CRE where UA = (ulam,d, q, st,h), Ua =, CEE by n, and
pop((mn(q)), st) = ((cp), §f,), then, for any stack 3//, FL;AQ/QN =, F(,]::Eﬁ/&” by n.

Proof. After application of Definition 3, by induction on - =, - by -.

6 Summarization Soundness

We prove that summarization is sound by induction on path length. In the
inductive step, we discriminate the penultimate state in the path. By the quasi-
completeness of the local semantics and the explicit handling of returns by the
algorithm, every possible ultimate state of the path is considered.

Theorem 2 (Summarization Soundness).
After summarization,

1. if p=ZI(pr,d) ~* UA ~* ¢ such that Ua = CE:(), ([UA| a1, [<]ar) € Seen;

2. ifp=ZI(pr,d) ~* UA ~* CEE such that UA =, CEE by n, then (|[UA|q, |CEE|q,n) €
Summary; and

3. if p=1L(pr,d) ~+ ¢ such that ¢ is a final state, then |¢|q € Final.

Proof. By induction on [p|.
Base case p = Z(pr,d) ~° Z(pr,d) 3
At summarization commencement, (Z(pr,,)Z(pr,)) € Seen.
Inductive case p = f(pr, ci) ~w* & ¢
By cases on <.

1. Case ¢ = UA: By induction, (<], [<|ar) is added to Work, since ¢ = CE¢().
By Lemma 7, the first case of the main loop calls Propagate(|UA|a, [<|al)-
The result follows from the soundness of Propagate.

2. Case ¢ = CA or ¢ = CEL By induction, (|UA|q, [¢|a) is added to Work,
where UA = CF¢(). By Lemma 7, the first case of the main loop calls
Propagate(|UA|u, |<'|ar). The result follows from the soundness of Propagate.

3. Case ¢ = UE:

By induction, (|UA¢al, [¢|a) is added to Work, where Uag = CE¢(). By
Lemma 7, the second case of the main loop calls Propagate(|</|ar, [<'|ar),
since ¢ = CE&(). If a summary exists, then it holds by Lemma 9. If a
summary doesn’t exist, then it holds by Lemma 4.

4. Case ¢ = CEE: By induction, (|UA|u,[S]ar) is added to Work, where UA =
CE¢(). The third case of the main loop calls Return(|UA| 4, [UA| a1, CP(JUA|a, CV (I]ar)))-
The result follows by the soundness of Return.

Lemma 10 (Return Sound).

If

1. p=1I(pr,d) ~° Uay ~T UBy ~» ... ~» UA, ~T UE, ~ UA ~t CEE such
that UAAZ' = CEL?EI_ (),

UA =, CEE by j;

. (|UAAZ‘|al7 ‘UAEZ"GZ, |UAAi+1|al) S C’all;

([UAR|al, [UER a1, [UA|ar) € Call; and

if (|UAla1, |CEE|w,j) € Summary, then

(a) if UA; =, CEE by j;, then (JUA;|q1, |CEE|q, ji) € Summary; and

(b) if Z(pr,d) =, CBE by 1 and CBE ~ ¢, then |¢|w € Final.

SENEEES

then, after Return(|UA|q, |CEE|4, 7),

1. (|UAA‘alv |C]::E|alyj) € Summary;
2. if Un; =, CEE by j;, then (|UA;|al, |CEE|ar, ji) € Summary; and
3. if Z(pr,d) =, CEE by 1 and CEE ~~ ¢, then []q € Final.

Proof. By case analysis on Summary and induction on Lemma 11.

Lemma 11 (Link Sound).
If

. p=ZL(pr,d) ~° UAy ~T UE| ~» ...~ UA, ~T UE, ~ UA ~T CRE such
that UA; = CE s, ();

UA =, CEE by j;

E (|UAAZ‘|,,‘Z7 ‘UAEi‘al, |UAA7;+1|al) € Call;

- (|VAn|at, [UER|al, [UA|w) € Call; and

. (|UA|ar, |CEE| 41, 7) € Summary.

~

SR NEES

then, after Link(|UAp|al, [UEn|al, [UA|ar, |CEE]ar, 1),

1. if CA(|UEw| a1, J) = k, then preconditions for Return(|UAy|al, |CEE| a1, CP(|UAR]a1s k)
are met and its postconditions hold; and

2. if CA(|UEn|ai, §) = clam, then preconditions for Update(|UAy|al, [UA|al, [UER|a1) |CEE| a1j
are met and its postconditions hold.

Proof. By cases on CA(|UEy|a1,7), induction on Lemma 10, and Lemma 12.

Lemma 12 (Update Sound).

If

1. p= f(pr,ti) w0 YA ~»T UE] ~ ...~ UA, ~T UE, ~» UA ~T UE ~
UA" ~F CEE such that Ua; = CEyy, () and UA = CE();

2. UA' =, CEBE by j;

3. (|UA| a1, |CBE| a1, 7) € Summary;

4. (JUAi]ats |UEi|ats [UA 1] a1) € Call;

5. (|UAR|at, [UER|al, [UA| 1) € Call;

6. (|UA|a1, |UE| o, |UA'|w) € Call; and

7. CA(|UE|w, j) = clam

then, after Link(|UA| o1, |UE| a1, |UA | a1, |CEE| 41, 7), the postconditions of Propagate(|UA|ar, [€]ar)
hold, where CEE ~ ¢.

Proof. By Lemma 4, Lemma 3, and the definition of CF

Lemma 13 (Final Sound).
Ifp = Z(pr,d) ~+ CRE such that Z(pr, d) =, CEE by 1, then, after Final(|CEE|y),
|¢|at € Final, where CEE ~ <.

Proof. By Lemma 3.

7 Summarization Soundness

Theorem 3 (Summarization Completeness).
After summarization,

1. if (UA,Q) € Seen, then there exists

p = I(pr,d) ~* UA ~* ¢ such that
UA = |UAA‘ag, ¢ = |§|a1, and UA = CEg()

J

2. if (UA,CEE,n) € Summary then there exists p = L(pr,d) ~* UA ~T CEE
such that UA = |UA|q, CEE = |CEE|y, and UA =, CEE by n; and

3. if ¢ € Final, then there exists p = Z(pr,d) ~T1 ¢ such that S = [S|q and < is
a final state.

Proof. By induction on the number of iterations n through the loop.

Base case n = 0: R

At summarization commencement, (Z(pr,,)Z(pr,)) € Seen and Z(pr,d) ~
Z(pr,d).

Inductive case n = i:

Each iteration commences by considering (UA,<) such that there is a path
p=ZI(pr,d) ~* UA ~* ¢ such that UA = |UA|4 and ¢ = [¢]4.

By cases on ¢.

1. Case ¢ = UA or ¢ = CA or ¢ = CEL:
The first case of the main loop calls Propagate(UA, ') for each ¢’ € succ(S).
By Lemma 7, there exists ¢’ such that ¢ ~» ¢’ and [¢'|o; = ¢’. Then there
exists path Z(pr,d) ~* UA ~* ¢~ &

2. Case ¢ = UE:
By Lemma 7, for each ¢’ € succ(<), there is ¢’ such that ¢ ~~ ¢ and <], = ¢
Then there exists path Z(pr,d) ~* UA ~»* ¢ ~» ¢ and the precondi-
tions for Propagate(<’,<’) are met. Suppose (¢, CEE,j) € Summary. By
Lemma 9, there exists path Z(pr,d) ~* UA ~»T ¢ ~» & ~»T CRE such that
|CEE|4 = CEE and ¢’ =, CEE by j. With (UA,<,<") € Call, the preconditions
for Link(UA, ¢, <, OEE, j) are met and its postconditions hold.

3. Case ¢ = CEE:
By definition, UA =, ¢ by CP(UA, CV(<)). Then the preconditions for Return(Ua, ¢, CP(UA, CV (S)))
are met and its postconditions hold.

Lemma 14 (Return Complete).

If

1. there exists p = i'(pr, d) 0 UA] ~T UEp ~ ...~ UA, ~T UE, ~ UA ~T
CEE such that UA; = CE . ();

2. UA =, CEE by j;

3. (|UAA1‘|al7 ‘UAEi‘al, |UAAi+1|al) S Call;

4. (|UAat, [UER |, [UA|) € Call; and

then, after Return(|UA|qL, |CEE| a1, 7),

1. if (JUA| 415 |CEE| a1, j;) € Summary, then there exists path with UA; =, CEE by j;;
and

2. if |$la € Final, then there exists path with f(pr,ci) =, CEE by 1 and CEE ~
<.

Proof. By Lemma 5 and Lemma 3.

Lemma 15 (Link Complete).
1If

~

there exists path p = Z(pr,d) ~* UA ~1 UE ~» UA" ~*1 CEE such that
UA; = CE s, ()

UA =, CEE by j;

(|UA:] at, [UE:|ats |UAi41|ar) € Call;

([UAnats [UBR i, [UA|a1) € Call; and

(|UA|ai, |CEE|ar, 7) € Summary.

Guds o b0

then, after Link(|UAAn|al7 |[fEn|al; |UAA|ala |C]:3E|al7j)7

1. if CA(|UEL|w, J) = k, then preconditions for Return(|UAy |, |CEE| o, CP(|UAR|al, k))
are met and its postconditions hold; and

2. if CA(|UEn|a, §) = clam, then preconditions for Update(|UAp|al, [UA|al, [UEn|a) |CEE| a1j
are met and its postconditions hold.

Proof. By cases on CA(|UEy]|q1,J), induction on Lemma 14, and Lemma 16.

Lemma 16 (Update Complete).

If there exists path p = Z(pr,d) ~* UA ~»1 UE ~ UA" ~»T CRE such that
UA" =, CEE by j and CA(UE,j) = clam, then, after Update(UA, UA", UE)CEE]
such that [UA|a = UA, [UE|a = UE, [UA"|o = UA", and |CBE|y = CEE, (UA,S) €
Seen and there exists p' = p ~ ¢ such that = [y

Proof. By Lemma 4 and Lemma 9.

Lemma 17 (Final Complete).

If, for CEE, there exists path p = Z(pr,d) ~T CEE such that Z(pr,d) =,
CEE by 1 and |CEE|y = CEE, then, after Final(CEE), ¢ € Final andi(pr, ci) st
CEE ~ ¢ where [¢]q = <.

Proof. By Lemma 3.

