Multi-Continuation Pushdown Analysis Technical Report

Kimball Germane and Matthew Might

University of Utah

1 Abstraction Soundness

```
Theorem 1 (Simulation).
```

```
If \varsigma \to \varsigma' and |\varsigma|_{ca} \sqsubseteq \hat{\varsigma}, then there exists \hat{\varsigma}' such that \hat{\varsigma} \leadsto \hat{\varsigma}' and |\varsigma'|_{ca} \sqsubseteq \hat{\varsigma}'.
```

Proof. By cases on ς .

```
1. Case \varsigma = UE:
               UE = ((f e q^+)_{\gamma}, \beta_u, \beta_k, st, ve, t) and
               \hat{\text{UE}} = ((f e q^+)_{\gamma}, \hat{st}, h) \text{ where}
               |ve|_{ca} \sqsubseteq h \text{ so } |proc = \mathcal{A}_u(f, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(f, h) \ni ulam \text{ and } |\mathbf{d} = \mathcal{A}_u(\mathbf{e}, h) \models ulam \mapsto \hat{\mathcal{A}}(f, h) \mapsto ulam \mapsto ula
               \hat{\mathcal{A}}(\boldsymbol{e},h) = \hat{\boldsymbol{d}};
               c = A_k(q, \beta_k, st), reconstruct(CP(\gamma), \beta_k, st) = \hat{st}, and Lemma 1 so pop(c, (\beta_u, \beta_k) ::
               st) = st', (\hat{\boldsymbol{q}}, \widehat{st}') = reconstruct^*(\boldsymbol{c}, st'), \text{ and } (\hat{\boldsymbol{q}}, \widehat{st}') = \widehat{pop}(\boldsymbol{q}, \widehat{st});
               so |(proc, \boldsymbol{d}, \boldsymbol{c}, st', ve, t')|_{ca} \sqsubseteq (ulam, \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}, \widehat{st}', h)
2. Case \varsigma = ce:
               CE = ((q e)_{\gamma}, \beta_u, \beta_k, st, ve, t) and
               \hat{CE} = ((q e)_{\gamma}, \hat{st}, h) where
               |ve|_{ca} \sqsubseteq h \text{ so } |\boldsymbol{d} = \mathcal{A}_u(\boldsymbol{e}, \beta_u, ve)|_{ca} \sqsubseteq \hat{\mathcal{A}}(\boldsymbol{e}, h) = \hat{\boldsymbol{d}};
               (cp, fp) = c = \mathcal{A}_k(q, \beta_k, st), reconstruct(CP(\gamma), \beta_k, st) = \widehat{st}, and Lemma 1
              so pop(\langle c \rangle, (\beta_u, \beta_k) :: st) = st', (\langle cp \rangle, \widehat{st}') = reconstruct^*(\langle (cp, |st|) \rangle, st'),
               and (\langle cp \rangle, \widehat{st}') = \widehat{pop}(\langle q \rangle, \widehat{st});
               so |(cp, \mathbf{d}, st', ve, t')|_{ca} \sqsubseteq (cp, \hat{\mathbf{d}}, \widehat{st}, h)
3. Case \varsigma = UA:
               UA = (proc, \boldsymbol{d}, \boldsymbol{c}, st, ve, t) and
               \hat{\text{UA}} = (ulam, \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}, \hat{st}, h) \text{ where}
               |proc|_{ca} = \{ulam = (\lambda (\boldsymbol{u} \boldsymbol{k}^+) call)_{\gamma}\},\
               (\hat{q}, \hat{st}) = reconstruct^*(c, st) so reconstruct(CP(call), \beta_k, st) = reconstruct(k, [k \mapsto
               [c], st) = [k \mapsto \hat{q}] :: \widehat{st} = \widehat{st}', and
               |ve|_{ca} \sqsubseteq h \text{ and } |\mathbf{d}|_{ca} \sqsubseteq \hat{\mathbf{d}} \text{ so } |ve'|_{ca} = |ve[(\mathbf{u}, t') \mapsto \mathbf{d}]|_{ca} = |ve|_{ca} \sqcup |[(\mathbf{u}, t') \mapsto \mathbf{d}]|_{ca}
               |\boldsymbol{d}||_{ca} \sqsubseteq h \sqcup [\boldsymbol{u} \mapsto \hat{\boldsymbol{d}}] = h'
               so |(call, \beta'_u, \beta_k, st, ve', t')|_{ca} \sqsubseteq (call, \hat{st}', h')
4. Case \varsigma = CA:
               CA = (clam, \boldsymbol{d}, st, ve, t) and
               \hat{CA} = (clam, \hat{\boldsymbol{d}}, \hat{st}, h) where
```

```
clam = (\lambda(\boldsymbol{u}) \ call)_{\gamma},
(\langle cp \rangle, \widehat{st}) = reconstruct^*(\langle (cp, |st|) \rangle, st), \text{ and }
|ve|_{ca} \sqsubseteq h \text{ and } |\boldsymbol{d}|_{ca} \sqsubseteq \hat{\boldsymbol{d}} \text{ so } |ve'|_{ca} = |ve[(\boldsymbol{u}, t') \mapsto \boldsymbol{d}]|_{ca} = |ve|_{ca} \sqcup |[(\boldsymbol{u}, t') \mapsto \boldsymbol{d}]|_{ca} \sqsubseteq h \sqcup [\boldsymbol{u} \mapsto \hat{\boldsymbol{d}}] \sqsubseteq h'
so |(call, \beta'_{u}, \beta_{k}, st, ve', t')|_{ca} \sqsubseteq (call, \widehat{st}, h')
```

Definition 1 A stack st is well-formed if, for every continuation environment β_k at stack level n, the frame pointer fp of each continuation c in β_k is less than n.

Lemma 1. Suppose $|UE|_{ca} \sqsubseteq \widehat{UE}$ where $UE = ((f e q^+)_{\gamma}, \beta_u, \beta_k, st, ve, t)$ and UE is well-formed. If $\mathbf{k} = CP(\gamma)$, $A_k(\mathbf{q}, \beta_u, st) = \mathbf{c}$, reconstruct $(\mathbf{k}, \beta_k, st) = \widehat{st}$, and $pop(\mathbf{c}, (\beta_u, \beta_k) :: st) = st'$, then reconstruct* $(\mathbf{c}, st') = \widehat{pop}(\mathbf{q}, \widehat{st})$.

Proof. By induction on st.

```
1. Base case st = \langle \rangle:

reconstruct(\mathbf{k}, \beta_k, \langle \rangle) = [\mathbf{k} \mapsto \mathbf{halt}] :: \langle \rangle \Leftarrow reconstruct^*((\mathbf{halt}, 0), \langle \rangle) = (\mathbf{halt}, \langle \rangle)

If \mathbf{q} = \mathbf{k}', then pop(\mathbf{c}, (\beta_u, \beta_k) :: \langle \rangle) = pop((\mathbf{halt}, 0), (\beta_u, \beta_k) :: \langle \rangle) = \langle \rangle and reconstruct^*((\mathbf{halt}, 0), \langle \rangle) = (\mathbf{halt}, \langle \rangle) = \widehat{pop}(\mathbf{k}', [\mathbf{k} \mapsto \mathbf{halt}] :: \langle \rangle).

Otherwise, pop(\mathbf{c}, (\beta_u, \beta_k) :: \langle \rangle) = (\beta_u, \beta_k) :: \langle \rangle and reconstruct^*(\mathbf{c}, (\beta_u, \beta_k) :: \langle \rangle) = (\mathbf{q}, [\mathbf{k} \mapsto \mathbf{halt}] :: \langle \rangle).

2. Inductive case st = (\beta'_u, \beta'_k) :: st_k:

reconstruct(\mathbf{k}, \beta_k, (\beta'_u, \beta'_k) :: st_k) = [\mathbf{k} \mapsto \hat{\mathbf{q}}] :: \widehat{st}_k \Leftarrow reconstruct^*(\mathbf{c}, st_k) = (\hat{\mathbf{q}}, \widehat{st}_k)

If \mathbf{q} = \mathbf{k}', then pop(\mathbf{c}, (\beta_u, \beta_k) :: (\beta'_u, \beta'_k) :: st_k) = pop(\mathbf{c}, (\beta'_u, \beta'_k) :: st_k) = st'_k and reconstruct^*(\mathbf{c}, st'_k) = (\hat{\mathbf{q}}, \widehat{st}'_k) = \widehat{pop}(\mathbf{k}', [\mathbf{k} \mapsto \hat{\mathbf{q}}] :: \widehat{st}_k).

Otherwise, pop(\mathbf{c}, (\beta_u, \beta_k) :: (\beta'_u, \beta'_k) :: st_k) = (\beta_u, \beta_k) :: (\beta'_u, \beta'_k) :: st_k and reconstruct^*(\mathbf{c}, (\beta_u, \beta_k) :: (\beta'_u, \beta'_k) :: st_k) = (\mathbf{q}, [\mathbf{k} \mapsto \mathbf{halt}] :: \widehat{st}_k) = \widehat{pop}(\mathbf{q}, [\mathbf{k} \mapsto \hat{\mathbf{q}}] :: \widehat{st}_k).
```

The following lemma establishes that calls are more conservative than exits: a user call with a continuation argument q will pop at most as many frames as a continuation call with operator q; moreover, the positional continuation mapping is preserved on the stack.

Lemma 2 (Conservative Pop).

```
Let \hat{q} = \pi_i(\hat{q}). If \widehat{pop}(\langle \hat{q} \rangle, \widehat{st}) = (\langle clam \rangle, \widehat{st}_0) and \widehat{pop}(\hat{q}, \widehat{st}) = (\hat{q}', \widehat{st}'), then \widehat{pop}(\langle \pi_i(\hat{q}') \rangle, \widehat{st}') = (\langle clam \rangle, \widehat{st}_0).
```

Proof. By cases on \hat{q} .

- Case $\hat{q} = clam$: By definition, $\widehat{pop}(\hat{q}, \widehat{st}) = (\hat{q}, \widehat{st})$. Then $\widehat{pop}(\langle \pi_i(\hat{q}') \rangle, \widehat{st}') = \widehat{pop}(\langle \pi_i(\hat{q}) \rangle, \widehat{st}) = \widehat{pop}(\langle q \rangle, \widehat{st}) = (\langle clam \rangle, \widehat{st}_0)$, by assumption.
- Case q = k: By induction on whether $\pi_i(\hat{\mathbf{q}}) = clam$ for some i. If so, then $\widehat{pop}(\hat{\mathbf{q}}, \widehat{st}) = (\hat{\mathbf{q}}, \widehat{st})$. If not, then $\widehat{pop}(\hat{\mathbf{q}}, \widehat{st}) = \widehat{pop}(\hat{\mathbf{q}}, sm :: \widehat{st}'') = \widehat{pop}(sm(\hat{\mathbf{q}}), \widehat{st}'')$ and the result follows by induction.

Lemma 3 (Conservative Path).

Suppose $\widehat{\text{UA}} \equiv_p \widehat{\text{CÉE}}$ by n where $\widehat{\text{UA}} = (ulam, \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}, \widehat{st}, h)$ and $CV(\widehat{\text{CÉE}}) = k$. If $\widehat{pop}(\langle \pi_n(\hat{\boldsymbol{q}}) \rangle, \widehat{st}) = (\langle clam \rangle, \widehat{st}')$, then $\widehat{pop}(\langle k \rangle, \widehat{st}_{\widehat{\text{CÉE}}}) = (\langle clam \rangle, \widehat{st}')$.

Proof. By induction on the definition of $\cdot \equiv_p \cdot$ by \cdot .

- 1. Case $p \equiv \hat{\text{UA}} \leadsto \hat{\varsigma}' \leadsto^* \text{C\'EE}$: By $\hat{\text{UA}} \leadsto \hat{\varsigma}'$, $\widehat{st}_{\hat{\varsigma}'} = sm :: \widehat{st}_{\hat{\text{UA}}}$ where $sm(k) = \pi_n(\hat{q})$ where $CP(\hat{\text{UA}}, k) = n$. By Lemma 5, $\widehat{st}_{\hat{\text{C\'EE}}} = sm :: \widehat{st}_{\hat{\text{UA}}}$. Then $\widehat{pop}(\langle k \rangle, \widehat{st}_{\hat{\text{C\'EE}}}) = \widehat{pop}(\langle k \rangle, sm :: \widehat{st}_{\hat{\text{UA}}})$. By definition, $\widehat{pop}(\langle k \rangle, sm :: \widehat{st}_{\hat{\text{UA}}}) = \widehat{pop}(\langle sm(k) \rangle, \widehat{st}_{\hat{\text{UA}}})$. By the above, $\widehat{pop}(\langle sm(k) \rangle, \widehat{st}_{\hat{\text{UA}}}) = \widehat{pop}(\langle \pi_n(\hat{q}) \rangle, \widehat{st}_{\hat{\text{UA}}})$. By assumption, $\widehat{pop}(\langle \pi_n(\hat{q}) \rangle, \widehat{st}_{\hat{\text{UA}}}) = (\langle clam \rangle, \widehat{st}')$.
- 2. Case $p \equiv \hat{\text{UA}} \leadsto \hat{\varsigma}' \leadsto^* \hat{\text{UE}} \leadsto \hat{\text{UA}}_0 \leadsto^+ \hat{\text{CEE}}$ where the operator of $\hat{\text{UA}}$ is $(\lambda_{\psi} (\boldsymbol{u} \, k_1 \, \dots \, k_N) \, call)$, the call of $\hat{\text{UE}}$ is $(f \, \boldsymbol{e} \, q_1 \, \dots \, q_{N_0})_{\psi_0}$, and $\hat{\text{UA}}_0 \equiv_p \hat{\text{CEE}}$ by n_0 :

Let $\hat{\mathbf{q}}' = \langle q_1, \dots, q_{N_0} \rangle$. By $\hat{\mathbf{u}} \land \varphi \hat{\varsigma}'$, $\hat{st}_{\hat{\varsigma}'} = sm :: \hat{st}_{\hat{\mathbf{u}} \land}$ where $sm(k_n) = \pi_n(\hat{\mathbf{q}})$. By Lemma 5, $\hat{st}_{\hat{\mathbf{u}} \land} = sm :: \hat{st}_{\hat{\mathbf{u}} \land}$. By assumption, $\widehat{pop}(\langle \pi_{n_0}(\hat{\mathbf{q}}') \rangle, \hat{st}_{\hat{\mathbf{u}} \land}) = \widehat{pop}(\langle k_n \rangle, sm :: \hat{st}_{\hat{\mathbf{u}} \land})$. By above, $\widehat{pop}(\langle k_n \rangle, sm :: \hat{st}_{\hat{\mathbf{u}} \land}) = \widehat{pop}(sm(k_n), \hat{st}_{\hat{\mathbf{u}} \land})$. By assumption, $\widehat{pop}(\langle sm(k_n) \rangle, \hat{st}_{\hat{\mathbf{u}} \land}) = \widehat{pop}(\langle \pi_n(\hat{\mathbf{q}}) \rangle, \hat{st}_{\hat{\mathbf{u}} \land})$. By definition, $\hat{\mathbf{u}} \in \varphi$ ($sm(k_n) \land \hat{st}_{\hat{\mathbf{u}} \land} = \hat{st}_{\hat{\mathbf{u}} \land} = \widehat{pop}(\hat{\mathbf{q}}', \hat{st}_{\hat{\mathbf{u}} \land})$. By Lemma 2, $\widehat{pop}(\langle \pi_{n_0}(\hat{\mathbf{q}}_0) \rangle, \hat{st}_0) = (\langle clam \rangle, \hat{st}')$. By induction, $\widehat{pop}(\langle k \rangle, \hat{st}_{\hat{\mathbf{c}} \land}) = (\langle clam \rangle, \hat{st}')$.

Lemma 4 (Same Stack).

If $p \equiv \hat{\text{UE}} \leadsto \hat{\text{UA}} \leadsto^+ \hat{\text{CEE}} \leadsto \hat{\varsigma}$ where $call_{\hat{\text{UE}}} = (f e q_1 \dots q_n \dots q_N)_{\ell}, q_n \in CLam$, and $\hat{\text{UA}} \equiv_p \hat{\text{CEE}}$ by n, then $\hat{st}_{\hat{\varsigma}} = sm :: \hat{st}$ and $\hat{st}_{\hat{\text{UE}}} = sm :: \hat{st}$.

Proof. Let $\hat{\mathbf{q}} = \langle q_1, \dots, q_N \rangle$ so that $\pi_n(\hat{\mathbf{q}}) = clam$. By $\hat{\mathbf{U}} \in \mathcal{U}$ $\hat{\mathbf{u}}$, if $S_7(f)$, Then $\widehat{pop}(\pi_n(\hat{\mathbf{q}}), \widehat{st}_{\hat{\mathbf{U}}^{\scriptscriptstyle{\Xi}}}) = \widehat{pop}(\langle clam \rangle, \widehat{st}_{\hat{\mathbf{U}}^{\scriptscriptstyle{\Xi}}})$ and, by definition, $\widehat{pop}(\langle clam \rangle, \widehat{st}_{\hat{\mathbf{U}}^{\scriptscriptstyle{\Xi}}}) = (\langle clam \rangle, \widehat{st}_{\hat{\mathbf{U}}^{\scriptscriptstyle{\Xi}}})$. By $\hat{\mathbf{C}} \in \mathcal{U}$ $\hat{\mathbf{u}} \in \mathcal{U}$ $\hat{\mathbf{u}} \in \mathcal{U}$ where $(\langle clam' \rangle, \widehat{st}) = \widehat{pop}(\langle CV(\hat{\mathbf{C}} \in \mathcal{U}) \rangle, \widehat{st}_{\hat{\mathbf{U}} \in \mathcal{U}})$. By the above and Lemma 3, $\widehat{pop}(\langle CV(\hat{\mathbf{C}} \in \mathcal{U}) \rangle, \widehat{st}_{\hat{\mathbf{U}} \in \mathcal{U}}) = (\langle clam \rangle, \widehat{st}_{\hat{\mathbf{U}} \in \mathcal{U}})$.

Lemma 5 (Single Frame). If $p \equiv \hat{UA} \leadsto^+ \hat{\varsigma}$, then there exists sm such that, for all $\hat{\varsigma}$, if $\hat{UA} = CE_p(\hat{\varsigma})$, then $\hat{st}_{\hat{\varsigma}} = sm :: \hat{st}_{\hat{UA}}$.

Proof. By induction on the definition of CE_n .

- 1. Path composition doesn't satisfy the premise.
- 2. By induction on |p|.
 - (a) Base case of $p \equiv \hat{\text{UA}} \leadsto^0 \hat{\varsigma}' \leadsto \hat{\varsigma}$: $\hat{\text{UA}} = CE_p(\hat{\varsigma})$ holds by definition of \leadsto ; instantiate sm thereby.
 - (b) Inductive case of $p \equiv \hat{UA} \leadsto^+ \hat{\varsigma}' \leadsto \hat{\varsigma}$ where $\hat{UA} = CE_p(\hat{\varsigma}')$, $\hat{\varsigma}' \not\in \widehat{UEval}$, $\hat{\varsigma}' \not\in \widehat{CEvalExit}$, and $\widehat{st}_{\hat{\varsigma}'} = sm :: \widehat{st}_{\hat{UA}} : \widehat{st}_{\hat{\varsigma}} = sm :: \widehat{st}_{\hat{UA}}$ by cases of $\hat{\varsigma}'$ in $\hat{\varsigma}' \leadsto \hat{\varsigma}$.
- 3. By induction, $\hat{st}_{\hat{\text{U}E}} = sm :: \hat{st}_{\hat{\text{U}A}}$. By Lemma 4, $\hat{st}_{\hat{\varsigma}} = sm :: \hat{st}_{\hat{\text{U}A}}$.

2 Local Simulation Soundness

Lemma 6 (Local Simulation Soundness).

If $\hat{\varsigma} \leadsto \hat{\varsigma}'$ and $succ(|\hat{\varsigma}|_{al}) \neq \emptyset$, then $|\hat{\varsigma}'|_{al} \in succ(|\hat{\varsigma}|_{al})$.

Proof. By cases on $\hat{\varsigma}$.

The heap is simply carried over from the abstract domain and is updated in the same way in each Apply transition; we will not discuss it further.

- 1. Case $\hat{\varsigma} = ((\lambda_{\gamma} (u_1 \dots u_n k_1 \dots k_m) call), \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}, \widehat{st}, h)$: In the abstract, we have $\hat{\varsigma} \leadsto (call, \widehat{st}', h')$ where $\widehat{st}' = sm :: \widehat{st}$. Locally, we have $succ(|\hat{\varsigma}|_{al}) = succ((ulam, \hat{\boldsymbol{d}}, h)) = \{(call, h')\}$. Since $|\hat{\varsigma}'|_{al} = (call, h')$, we get $|\hat{\varsigma}'|_{al} \in \{|\hat{\varsigma}'|_{al}\}$.
- 2. Case $\hat{\varsigma} = ((f e_1 \dots e_n q_1 \dots q_m)_{\gamma}, \widehat{st}, h)$: In the abstract, we have $\hat{\varsigma} \leadsto (ulam, \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}', \widehat{st}', h)$ for $ulam \in \hat{\mathcal{A}}(f, h)$ where $\hat{\boldsymbol{d}} = \langle \hat{d}_1, \dots, \hat{d}_n \rangle$ for $\hat{d}_i = \hat{\mathcal{A}}(e_i, h)$ and $(\hat{\boldsymbol{q}}', \widehat{st}') = \widehat{pop}(\hat{\boldsymbol{q}}, \widehat{st})$ for $\hat{\boldsymbol{q}} = \langle \hat{q}_1, \dots, \hat{q}_m \rangle$.

Locally, we have $succ(|\hat{s}|_{al}) = succ(((f e_1 \dots e_n q_1 \dots q_m)_{\gamma}, h)) = \{(ulam, \hat{\boldsymbol{d}}, h) : ulam \in \mathcal{A}_u(f, \gamma)\hat{sth}\} = \{|(ulam, \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}', \hat{st}', h)|_{al} : ulam \in \mathcal{A}_u(f, \gamma)\hat{sth}\} \text{ where } \hat{\boldsymbol{d}} = \langle \hat{d}_1, \dots, \hat{d}_n \rangle \text{ for } \hat{d}_i = \mathcal{A}_u(e_i, \gamma)h.$

The sets are identical.

- 3. Case $\hat{\varsigma} = ((\lambda_{\gamma}(u_1 \dots u_n) \ call), \hat{\boldsymbol{d}}, sm :: \widehat{st}, h)$: In the abstract, we have $\hat{\varsigma} \leadsto (call, sm :: \widehat{st}, h')$ where $\hat{\boldsymbol{d}} = \langle \hat{d}_1, \dots, \hat{d}_n \rangle$. Locally, we have $succ(|\hat{\varsigma}|_{al}) = succ((clam, \hat{\boldsymbol{d}}, h)) = \{(call, h')\}$ where $\hat{\boldsymbol{d}} = \langle \hat{d}_1, \dots, \hat{d}_n \rangle$. Since $|\hat{\varsigma}'|_{al} = (call, h')$, we get $|\hat{\varsigma}'|_{al} \in \{|\hat{\varsigma}'|_{al}\}$.
- 4. Case $\hat{\varsigma} = ((\operatorname{clam} e_1 \dots e_n)_{\gamma}, \widehat{\operatorname{st}}, h)$: In the abstract, we have $\hat{\varsigma} \leadsto (\operatorname{clam}, \hat{\boldsymbol{d}}, \widehat{\operatorname{st}}, h)$ where $\hat{\boldsymbol{d}} = \langle \hat{d}_1, \dots, \hat{d}_n \rangle$ for $\hat{d}_i = \hat{\mathcal{A}}(e_i, h)$ since $(\langle \operatorname{clam} \rangle, \widehat{\operatorname{st}}) = \widehat{pop}(\langle \operatorname{clam} \rangle, \widehat{\operatorname{st}})$. Locally, we have $\operatorname{succ}(|\hat{\varsigma}|_{al}) = \operatorname{succ}(((\operatorname{clam} e_1 \dots e_n)_{\gamma}, h)) = \{(\operatorname{clam}, \hat{\boldsymbol{d}}, h)\}$ where $\hat{\boldsymbol{d}} = \langle \hat{d}_1, \dots, \hat{d}_n \rangle$ for $\hat{d}_i = \mathcal{A}_u(e_i, \gamma)h$. Since $|\hat{\varsigma}'|_{al} = (\operatorname{clam}, \hat{\boldsymbol{d}}, h)$, we get $|\hat{\varsigma}'|_{al} \in \{|\hat{\varsigma}'|_{al}\}$.
- 5. $\hat{\zeta} = ((k e_1 \dots e_n)_{\gamma}, h)$: $succ(|\hat{\zeta}|_{al}) = \emptyset$ so the premise doesn't hold.

3 Local Simulation Soundness

Lemma 7 (Local Simulation Completeness).

If $\tilde{\varsigma} \to \tilde{\varsigma}'$, then, for each $\hat{\varsigma}$ such that $\tilde{\varsigma} = |\hat{\varsigma}|_{al}$, there exists $\hat{\varsigma}'$ such that $\tilde{\varsigma}' = |\hat{\varsigma}'|_{al}$ and $\hat{\varsigma} \leadsto \hat{\varsigma}'$.

Proof. By similar arguments as the proof for local simulation soundness.

4 Path Decomposition

Lemma 8 (Path Decomposition).

All paths can be decomposed as follows:

- 1. If $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^+ \text{CÊE}$, then $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^0 \text{UA}_1 \rightsquigarrow^+ \text{UE}_1 \rightsquigarrow \ldots \rightsquigarrow \text{UA}_n \rightsquigarrow^+ \text{UE}_n \rightsquigarrow \text{UA} \rightsquigarrow^+ \text{CÊE}$ where $\text{UA}_i = CE_p(\text{UE}_i)$ and $\text{UA} \equiv_p \text{CÊE}$ by m for some m and the mth continuation argument of UE_n is some clam.
- 2. If $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^* \hat{\varsigma}$ where $\hat{\varsigma} \notin \widehat{CEvalExit}$, then $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^0 \hat{UA}_1 \rightsquigarrow^+ \hat{UE}_1 \rightsquigarrow \dots \rightsquigarrow \hat{UA}_n \rightsquigarrow^+ \hat{UE}_n \rightsquigarrow \hat{UA} \rightsquigarrow^* \hat{\varsigma}$ where $\hat{UA}_i = CE_p(\hat{UE}_i)$ and $\hat{UA} = CE_p(\hat{\varsigma})$.

Proof. By induction on |p|.

- Base case $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\text{UA}}$: The path matches form 2 with n = 0. By definition of CE_p , $\hat{\mathcal{I}}(pr, =) CE_p(\hat{\text{UA}})$.
- Inductive case $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^* \hat{\varsigma}' \leadsto \hat{\varsigma}$: By cases on $\hat{\varsigma}$.
 - 1. Case $\hat{\varsigma} = \hat{\text{uA}}$: Then $\hat{\varsigma}' = \hat{\text{uE}}$ and we have $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\text{uA}}_1 \leadsto^+ \hat{\text{uE}}_1 \leadsto \dots \leadsto \hat{\text{uA}}_n \leadsto^+ \hat{\text{uE}}_n \leadsto \hat{\text{uA}}_{n+1} \leadsto^+ \hat{\varsigma}'$. Then for $\hat{\text{uE}}_{n+1} = \hat{\varsigma}'$, $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\text{uA}}_1 \leadsto^+ \hat{\text{uE}}_1 \leadsto \dots \leadsto \hat{\text{uA}}_n \leadsto^+ \hat{\text{uE}}_n \leadsto \hat{\text{uA}}_{n+1} \leadsto^+ \hat{\text{uE}}_{n+1} \leadsto \hat{\text{uA}} \leadsto^* \hat{\varsigma}$ with $\hat{\text{uA}}_{n+1} = CE_p(\hat{\text{uE}}_{n+1})$. By definition of CE_p , we have $\hat{\text{uA}} = CE_p(\hat{\varsigma})$. Thus, p matches form 2.
 - 2. Case $\hat{\varsigma} = \hat{\text{CA}}$: By cases on $\hat{\varsigma}'$.
 - (a) Case $\hat{\varsigma}' = \hat{\text{CEI}}$: We have $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^0 \hat{\text{UA}}_1 \rightsquigarrow^+ \hat{\text{UE}}_1 \rightsquigarrow \ldots \rightsquigarrow \hat{\text{UA}}_n \rightsquigarrow^+ \hat{\text{UE}}_n \rightsquigarrow \hat{\text{UA}} \sim^+ \hat{\text{CEI}}$. By definition of CE_p , we have $\hat{\text{UA}} = CE_p(\hat{\varsigma})$. Then $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^0 \hat{\text{UA}}_1 \rightsquigarrow^+ \hat{\text{UE}}_1 \rightsquigarrow \ldots \rightsquigarrow \hat{\text{UA}}_n \rightsquigarrow^+ \hat{\text{UE}}_n \wedge^+ \hat{$
 - (b) Case $\hat{\varsigma}' = \text{C\'e}$: We have $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\text{UA}}_1 \leadsto^+ \hat{\text{UE}}_1 \leadsto \ldots \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_1 \leadsto \ldots \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_1 \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_1 \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UA}}_n \leadsto^+ \hat{\text{UA}}_n \leadsto^+ \hat{\text{UA}}_n \leadsto^+ \hat{\text{UA}}_n \Longrightarrow^+ \hat{\text{UA}}_n \leadsto^+ \hat{\text{UA}}_n \Longrightarrow^+ \hat{\text{UA}}_n \leadsto^+ \hat{\text{$
 - 3. Case $\hat{\zeta} = \hat{\text{UE}}$: Then $\hat{\zeta}' = \hat{\text{A}}$ and we have $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\text{UA}}_1 \leadsto^+ \hat{\text{UE}}_1 \leadsto \dots \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_n \leadsto \hat{\text{UA}} \leadsto^* \hat{\text{A}}$. By definition of CE_p , $\hat{\text{UA}} = CE_p(\hat{\text{E}})$. By definition of \leadsto , $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\text{UA}}_1 \leadsto^+ \hat{\text{UE}}_1 \leadsto \dots \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_n \leadsto \hat{\text{UA}} \leadsto^+ \hat{\text{UE}}$. Thus, p matches form 2.
 - 4. Case $\hat{\zeta} = \hat{\text{CEI}}$: Similar to previous case.
 - 5. Case $\hat{\varsigma}=\text{C\'e}$: For $m=CP(\hat{\text{UA}},CV(\text{C\'e})),$ we have $\hat{\text{UA}}\equiv_p \hat{\text{C\'e}}$ by m. By induction on n.
 - (a) Base case $\hat{\text{UA}}_{i+1} \equiv_p \hat{\text{CEE}}$ by m_{i+1} and $CA(\hat{\text{UE}}_i, m) \in CLam$: Then $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^0 \hat{\text{UA}}_1 \rightsquigarrow^+ \hat{\text{UE}}_1 \rightsquigarrow \ldots \rightsquigarrow \hat{\text{UA}}_i \rightsquigarrow^+ \hat{\text{UE}}_i \rightsquigarrow \hat{\text{UA}}_{i+1} \rightsquigarrow^+ \hat{\text{CEE}}$.
 - (b) Inductive case $\hat{UA}_{i+1} \equiv_p \hat{CEE}$ by m_{i+1} and $CA(\hat{UE}_i, m_{i+1}) \in CVar$: Then $\hat{UA}_i \equiv_p \hat{CEE}$ by m_i for $m_i = CP(\hat{UA}_i, m_{i+1})$.

Definition 2 (Push Monotonicity) A path $p \equiv \hat{UA} \leadsto^* \hat{\varsigma}$ is push monotonic if $\hat{st}_{\hat{UA}}$ is a suffix of $\hat{st}_{\hat{\varsigma}'}$ for each $\hat{\varsigma}'$ in p.

For $p \equiv \hat{\text{UA}} \leadsto^+ \hat{\text{CEE}}$, even if $\hat{\text{UA}} \equiv_p \hat{\text{CEE}}$ by n, p isn't necessarily push monotonic: a tail call within might pop the stack below the point of entry. However, such a path can be *normalized* to remove incidental stack, and the result is push monotonic.

Definition 3 (Path Normalization) $F(p) = F_1(p, \langle \rangle)$ for $p \equiv \hat{UA} \leadsto^+ \hat{CEE}$ where $\hat{UA} \equiv_p \hat{CEE}$ by p

 $F_1(p, \widehat{st}) = F_2(p, \widehat{st}, \widehat{st}', \langle halt, \dots, halt \rangle)$ where $p \equiv \widehat{UA} \leadsto^+ \widehat{CEE}$ and $\widehat{UA} = (ulam, \hat{d}, \hat{q}, \widehat{st}', h)$ where $|\hat{q}| = |\langle halt, \dots, halt \rangle|$

 $F_2(p, \widehat{st}, \widehat{st}', \widehat{q}') = G_2(\hat{\text{UA}}, \widehat{st}, \widehat{st}', \widehat{q}') \rightsquigarrow^+ G_2(\hat{\text{CEE}}, \widehat{st}, \widehat{st}', \widehat{q}') \text{ if } \hat{\text{UA}} = CE_{\hat{\text{CEE}}}()$ where $p \equiv \hat{\text{UA}} \rightsquigarrow^+ \hat{\text{CEE}}$

 $F_2(p,\widehat{st},\widehat{st}',\widehat{\boldsymbol{q}}') = G_2(\hat{\text{UA}},\widehat{st},\widehat{st}',\widehat{\boldsymbol{q}}') \leadsto^+ G_2(\hat{\text{UE}},\widehat{st},\widehat{st}',\widehat{\boldsymbol{q}}') \leadsto F_3(p',\widehat{st},\widehat{st}',\widehat{\boldsymbol{q}}')$ if $\hat{\text{UA}} = CE_{\hat{\text{UE}}}()$ where $p \equiv \hat{\text{UA}} \leadsto^+ \hat{\text{UE}} \leadsto p'$ and $p' \equiv \hat{\text{UA}}_0 \leadsto^+ \hat{\text{CEE}}$ where $\hat{\text{UA}}_0 \equiv_p \hat{\text{CEE}}$ by n_0

 $F_3(p,\widehat{st},\widehat{st}',\widehat{q}) = F_2(p,\widehat{st},\widehat{st}',\widehat{q}) \text{ if } \widehat{st}' \text{ is a suffix of } \widehat{st}_{\hat{u}_A} \text{ where } p \equiv \hat{u}_A \leadsto^+$

 $F_{3}(p,\widehat{st},\widehat{st}',\hat{q}) = F_{1}(p,\langle\rangle) \text{ if } \widehat{st}' \text{ is not a suffix of } \widehat{st}_{\text{UA}} \text{ where } p \equiv \widehat{\text{UA}} \leadsto^{+} \widehat{\text{CÉE}}$ $G_{2}((ulam,\hat{d},\hat{q},\widehat{st},h),\widehat{st},\widehat{st}',\hat{q}') = (ulam,\hat{d},\hat{q}',\widehat{st}',h)$ $G_{2}((\ldots,\widehat{st}_{0},h),\widehat{st},\widehat{st}',\hat{q}') = (\ldots,\widehat{st}'',h)$ $\widehat{st}'' = fr_{1} :: \cdots :: fr_{n} :: fr'' :: \widehat{st}'$ fr'' = sm'' $sm'' = [k_{1} \mapsto \widehat{q}'_{1}, \ldots, k_{m} \mapsto \widehat{q}'_{m}]$ $\widehat{q}' = \langle \widehat{q}'_{1}, \ldots, \widehat{q}'_{m} \rangle$ $sm = [k_{1} \mapsto \widehat{q}_{1}, \ldots, k_{m} \mapsto \widehat{q}_{m}]$ fr = sm $\widehat{st}_{0} = fr_{1} :: \cdots :: fr_{n} :: fr :: \widehat{st}$

Lemma 9 (Stack Irrelevance).

If $p \equiv \widehat{\text{UA}} \leadsto^+ \widehat{\text{C}}\widehat{\text{E}}\widehat{\text{E}}$ where $\widehat{\text{UA}} = (ulam, \hat{\boldsymbol{d}}, \hat{\boldsymbol{q}}, \widehat{st}, h)$, $\widehat{\text{UA}} \equiv_p \widehat{\text{C}}\widehat{\text{E}}\widehat{\text{E}}$ by n, and $\widehat{pop}(\langle \pi_n(\hat{\boldsymbol{q}}) \rangle, \widehat{st}) = (\langle cp \rangle, \widehat{st}')$, then, for any stack \widehat{st}'' , $F_{\widehat{\text{UA}}}\widehat{st}'\widehat{st}'' \equiv_p F_{\widehat{\text{C}}\widehat{\text{E}}\widehat{\text{E}}}\widehat{st}'\widehat{st}''$ by n.

Proof. After application of Definition 3, by induction on $\cdot \equiv_p \cdot$ by \cdot .

6 Summarization Soundness

We prove that summarization is sound by induction on path length. In the inductive step, we discriminate the penultimate state in the path. By the quasi-completeness of the local semantics and the explicit handling of returns by the algorithm, every possible ultimate state of the path is considered.

Theorem 2 (Summarization Soundness).

After summarization,

- 1. if $p \equiv \hat{\mathcal{I}}(pr, \hat{\mathbf{d}}) \rightsquigarrow^* \hat{\mathsf{UA}} \rightsquigarrow^* \hat{\varsigma}$ such that $\hat{\mathsf{UA}} = CE_{\hat{\varsigma}}()$, $(|\hat{\mathsf{UA}}|_{al}, |\hat{\varsigma}|_{al}) \in Seen$;
- 2. if $p \equiv \hat{\mathcal{I}}(pr, \hat{d}) \rightsquigarrow^* \hat{\text{UA}} \rightsquigarrow^+ \hat{\text{CÉE}}$ such that $\hat{\text{UA}} \equiv_p \hat{\text{CÉE}}$ by n, then $(|\hat{\text{UA}}|_{al}, |\hat{\text{CÉE}}|_{al}, n) \in Summary$; and
- 3. if $p \equiv \hat{\mathcal{I}}(pr, \hat{\mathbf{d}}) \leadsto^+ \hat{\varsigma}$ such that $\hat{\varsigma}$ is a final state, then $|\hat{\varsigma}|_{al} \in Final$.

Proof. By induction on |p|.

Base case $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}})$:

At summarization commencement, $(\tilde{\mathcal{I}}(pr,)\tilde{\mathcal{I}}(pr,)) \in Seen.$

Inductive case $p \equiv \hat{\mathcal{I}}(pr, \hat{d}) \rightsquigarrow^* \hat{\varsigma} \rightsquigarrow \hat{\varsigma}'$:

By cases on $\hat{\zeta}$.

- 1. Case $\hat{\varsigma} = \hat{\text{UA}}$: By induction, $(|\hat{\varsigma}|_{al}, |\hat{\varsigma}|_{al})$ is added to Work, since $\hat{\varsigma} = CE_{\hat{\varsigma}}()$. By Lemma 7, the first case of the main loop calls $Propagate(|\hat{\text{UA}}|_{al}, |\hat{\varsigma}'|_{al})$. The result follows from the soundness of Propagate.
- 2. Case $\hat{\varsigma} = \hat{\text{CA}}$ or $\hat{\varsigma} = \hat{\text{CEI}}$: By induction, $(|\hat{\text{UA}}|_{al}, |\hat{\varsigma}|_{al})$ is added to Work, where $\hat{\text{UA}} = CE_{\hat{\varsigma}}()$. By Lemma 7, the first case of the main loop calls $\text{Propagate}(|\hat{\text{UA}}|_{al}, |\hat{\varsigma}'|_{al})$. The result follows from the soundness of Propagate.
- 3. Case $\hat{\zeta} = \hat{\text{UE}}$:
 - By induction, $(|\hat{u}A_0|_{al}, |\hat{\varsigma}|_{al})$ is added to Work, where $\hat{u}A_0 = CE_{\hat{\varsigma}}()$. By Lemma 7, the second case of the main loop calls $Propagate(|\hat{\varsigma}'|_{al}, |\hat{\varsigma}'|_{al})$, since $\hat{\varsigma}' = CE_{\hat{\varsigma}'}()$. If a summary exists, then it holds by Lemma 9. If a summary doesn't exist, then it holds by Lemma 4.
- 4. Case $\hat{\zeta} = \hat{\text{CEE}}$: By induction, $(|\hat{\text{UA}}|_{al}, |\hat{\zeta}|_{al})$ is added to Work, where $\hat{\text{UA}} = CE_{\hat{\zeta}}()$. The third case of the main loop calls $\text{Return}(|\hat{\text{UA}}|_{al}, |\hat{\text{UA}}|_{al}, CP(|\hat{\text{UA}}|_{al}, CV(|\hat{\zeta}|_{al})))$. The result follows by the soundness of Return.

Lemma 10 (Return Sound).

If

- 1. $p \equiv \hat{\mathcal{I}}(pr, \hat{d}) \leadsto^0 \hat{\text{UA}}_1 \leadsto^+ \hat{\text{UE}}_1 \leadsto \dots \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_n \leadsto \hat{\text{UA}} \leadsto^+ \hat{\text{CEE}} such$ that $\hat{\text{UA}}_i = CE_{\hat{\text{UE}}_i}();$
- 2. UA \equiv_p CÉE by j;
- 3. $(|\hat{\text{UA}}_i|_{al}, |\hat{\text{UE}}_i|_{al}, |\hat{\text{UA}}_{i+1}|_{al}) \in Call;$
- 4. $(|\hat{\text{UA}}_n|_{al}, |\hat{\text{UE}}_n|_{al}, |\hat{\text{UA}}|_{al}) \in Call; and$
- 5. if $(|\hat{u}A|_{al}, |\hat{c}EE|_{al}, j) \in Summary$, then
 - (a) if $\hat{\text{UA}}_i \equiv_p \hat{\text{CEE}} \ by \ j_i$, then $(|\hat{\text{UA}}_i|_{al}, |\hat{\text{CEE}}|_{al}, j_i) \in Summary$; and
 - (b) if $\hat{\mathcal{I}}(pr, \hat{d}) \equiv_{p} c\hat{\mathbf{E}} \mathbf{E} \ by \ 1 \ and c\hat{\mathbf{E}} \mathbf{E} \leadsto \hat{\varsigma}, \ then \ |\hat{\varsigma}|_{al} \in Final.$

then, after $Return(|\hat{UA}|_{al}, |\hat{CEE}|_{al}, j)$,

- 1. $(|\hat{UA}|_{al}, |\hat{CEE}|_{al}, j) \in Summary;$
- 2. if $\hat{UA}_i \equiv_p \hat{CEE}$ by j_i , then $(|\hat{UA}_i|_{al}, |\hat{CEE}|_{al}, j_i) \in Summary$; and
- 3. if $\hat{\mathcal{I}}(pr, \hat{d}) \equiv_{p} c\hat{\mathbf{E}} \mathbf{E} \ by \ 1 \ and \ c\hat{\mathbf{E}} \mathbf{E} \leadsto \hat{\varsigma}, \ then \ |\hat{\varsigma}|_{al} \in Final.$

Proof. By case analysis on Summary and induction on Lemma 11.

Lemma 11 (Link Sound).

If

- 1. $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^0 \hat{\mathrm{UA}}_1 \leadsto^+ \hat{\mathrm{UE}}_1 \leadsto \ldots \leadsto \hat{\mathrm{UA}}_n \leadsto^+ \hat{\mathrm{UE}}_n \leadsto \hat{\mathrm{UA}} \leadsto^+ \hat{\mathrm{CEE}} such$ that $\hat{\mathrm{UA}}_i = CE_{\hat{\mathrm{UE}}_i}(\cdot)$;
- 2. UA \equiv_p CÉE by j;
- 3. $(|\hat{\text{UA}}_i|_{al}, |\hat{\text{UE}}_i|_{al}, |\hat{\text{UA}}_{i+1}|_{al}) \in Call;$
- 4. $(|\hat{\mathbf{U}}\mathbf{A}_n|_{al}, |\hat{\mathbf{U}}\mathbf{E}_n|_{al}, |\hat{\mathbf{U}}\mathbf{A}|_{al}) \in Call; and$
- 5. $(|\hat{UA}|_{al}, |\hat{CEE}|_{al}, j) \in Summary$.

then, after $Link(|\hat{UA}_n|_{al}, |\hat{UE}_n|_{al}, |\hat{UA}|_{al}, |\hat{CEE}|_{al}, j)$,

- 1. if $CA(|\hat{\text{UE}}_n|_{al}, j) = k$, then preconditions for $\textit{Return}(|\hat{\text{UA}}_n|_{al}, |\hat{\text{CEE}}|_{al}, CP(|\hat{\text{UA}}_n|_{al}, k))$ are met and its postconditions hold; and
- 2. if $CA(|\hat{\text{UE}}_n|_{al}, j) = clam$, then preconditions for $\textit{Update}(|\hat{\text{UA}}_n|_{al}, |\hat{\text{UA}}|_{al}, |\hat{\text{UE}}_n|_{al})|\hat{\text{CEE}}|_{al}j$ are met and its postconditions hold.

Proof. By cases on $CA(|\hat{\text{UE}}_n|_{al}, j)$, induction on Lemma 10, and Lemma 12.

Lemma 12 (Update Sound).

If

- 1. $p \equiv \hat{\mathcal{I}}(pr, \hat{d}) \leadsto^0 \hat{\text{UA}}_1 \leadsto^+ \hat{\text{UE}}_1 \leadsto \dots \leadsto \hat{\text{UA}}_n \leadsto^+ \hat{\text{UE}}_n \leadsto \hat{\text{UA}} \leadsto^+ \hat{\text{UE}} \leadsto \hat{\text{UA}} \leadsto^+ \hat{\text{UE}} \Longrightarrow \hat{\text{UA}} \Longrightarrow \hat{\text{UA}$
- 2. $\hat{\text{UA}}' \equiv_p \hat{\text{CEE}} \ by \ j;$
- 3. $(|\hat{\text{UA}}'|_{al}, |\hat{\text{CEE}}|_{al}, j) \in Summary;$
- 4. $(|\hat{\text{UA}}_i|_{al}, |\hat{\text{UE}}_i|_{al}, |\hat{\text{UA}}_{i+1}|_{al}) \in Call;$
- 5. $(|\hat{\mathbf{U}}\mathbf{A}_n|_{al}, |\hat{\mathbf{U}}\mathbf{E}_n|_{al}, |\hat{\mathbf{U}}\mathbf{A}|_{al}) \in Call;$
- 6. $(|\hat{\mathrm{UA}}|_{al}, |\hat{\mathrm{UE}}|_{al}, |\hat{\mathrm{UA}}'|_{al}) \in Call; and$
- 7. $CA(|\hat{\text{UE}}|_{al}, j) = clam$

then, after $Link(|\hat{\text{UA}}|_{al}, |\hat{\text{UE}}|_{al}, |\hat{\text{UA}}'|_{al}, |\hat{\text{CEE}}|_{al}, j)$, the postconditions of $Propagate(|\hat{\text{UA}}|_{al}, |\hat{\varsigma}|_{al})$ hold, where $\hat{\text{CEE}} \leadsto \hat{\varsigma}$.

Proof. By Lemma 4, Lemma 3, and the definition of CE.

Lemma 13 (Final Sound).

If $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^+$ CÊE such that $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \equiv_p$ CÊE by 1, then, after Final($|\text{CÊE}|_{al}$), $|\hat{\varsigma}|_{al} \in Final$, where CÊE $\leadsto \hat{\varsigma}$.

Proof. By Lemma 3.

7 Summarization Soundness

Theorem 3 (Summarization Completeness).

After summarization,

1. if $(\tilde{\text{UA}}, \tilde{\zeta}) \in Seen$, then there exists $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^* \hat{\zeta}$ such that $\tilde{\text{UA}} = |\hat{\text{UA}}|_{al}, \tilde{\zeta} = |\hat{\zeta}|_{al}$, and $\hat{\text{UA}} = CE_{\hat{\zeta}}()$;

- 2. if $(\tilde{\text{UA}}, \tilde{\text{CEE}}, n) \in Summary \ then \ there \ exists \ p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^* \tilde{\text{UA}} \leadsto^+ \tilde{\text{CEE}}$ such that $\tilde{\text{UA}} = |\tilde{\text{UA}}|_{al}$, $\tilde{\text{CEE}} = |\tilde{\text{CEE}}|_{al}$, and $\tilde{\text{UA}} \equiv_p \tilde{\text{CEE}} \ by \ n$; and
- 3. if $\tilde{\varsigma} \in Final$, then there exists $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^+ \hat{\varsigma}$ such that $\tilde{\varsigma} = |\hat{\varsigma}|_{al}$ and $\hat{\varsigma}$ is a final state.

Proof. By induction on the number of iterations n through the loop.

Base case n = 0:

At summarization commencement, $(\tilde{\mathcal{I}}(pr,,)\tilde{\mathcal{I}}(pr,)) \in Seen$ and $\hat{\mathcal{I}}(pr,\hat{\boldsymbol{d}}) \leadsto \hat{\mathcal{I}}(pr,\hat{\boldsymbol{d}})$.

Inductive case n = i:

Each iteration commences by considering $(\tilde{\text{UA}}, \tilde{\zeta})$ such that there is a path $p \equiv \hat{\mathcal{I}}(pr, \hat{d}) \rightsquigarrow^* \hat{\text{UA}} \rightsquigarrow^* \hat{\zeta}$ such that $\tilde{\text{UA}} = |\hat{\text{UA}}|_{al}$ and $\tilde{\zeta} = |\hat{\zeta}|_{al}$. By cases on $\tilde{\zeta}$.

- 1. Case $\tilde{\zeta} = \tilde{\text{UA}}$ or $\tilde{\zeta} = \tilde{\text{CA}}$ or $\tilde{\zeta} = \tilde{\text{CEI}}$: The first case of the main loop calls $\text{Propagate}(\tilde{\text{UA}}, \tilde{\zeta}')$ for each $\tilde{\zeta}' \in succ(\tilde{\zeta})$. By Lemma 7, there exists $\hat{\zeta}'$ such that $\hat{\zeta} \leadsto \hat{\zeta}'$ and $|\hat{\zeta}'|_{al} = \tilde{\zeta}'$. Then there exists path $\hat{\mathcal{I}}(pr, \hat{d}) \leadsto^* \hat{\text{UA}} \leadsto^* \hat{\zeta} \leadsto \hat{\zeta}'$.
- 2. Case $\tilde{\zeta} = \tilde{\text{UE}}$: By Lemma 7, for each $\tilde{\zeta}' \in succ(\tilde{\zeta})$, there is $\hat{\zeta}'$ such that $\hat{\zeta} \leadsto \hat{\zeta}'$ and $|\hat{\zeta}'|_{al} = \tilde{\zeta}'$. Then there exists path $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^* \hat{\text{UA}} \leadsto^* \hat{\zeta} \leadsto \hat{\zeta}'$ and the preconditions for Propagate $(\tilde{\zeta}', \tilde{\zeta}')$ are met. Suppose $(\tilde{\zeta}', \tilde{\text{CEE}}, j) \in Summary$. By Lemma 9, there exists path $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \leadsto^* \hat{\text{UA}} \leadsto^+ \hat{\zeta} \leadsto \hat{\zeta}' \leadsto^+ \hat{\text{CEE}}$ such that $|\hat{\text{CEE}}|_{al} = \hat{\text{CEE}}$ and $\hat{\zeta}' \equiv_p \hat{\text{CEE}}$ by j. With $(\tilde{\text{UA}}, \tilde{\zeta}, \tilde{\zeta}') \in Call$, the preconditions
- for $Link(\tilde{UA}, \tilde{\zeta}, \tilde{\zeta}', \tilde{CEE}, j)$ are met and its postconditions hold. 3. Case $\tilde{\zeta} = \tilde{CEE}$: By definition, $\hat{UA} \equiv_p \hat{\zeta}$ by $CP(\hat{UA}, CV(\hat{\zeta}))$. Then the preconditions for $Return(\tilde{UA}, \tilde{\zeta}, CP(\tilde{VA}, CV(\tilde{\zeta})))$ are met and its postconditions hold.

Lemma 14 (Return Complete).

If

- 1. there exists $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^0 \hat{\mathrm{UA}}_1 \rightsquigarrow^+ \hat{\mathrm{UE}}_1 \rightsquigarrow \ldots \rightsquigarrow \hat{\mathrm{UA}}_n \rightsquigarrow^+ \hat{\mathrm{UE}}_n \rightsquigarrow \hat{\mathrm{UA}} \rightsquigarrow^+ \hat{\mathrm{UE}}_n \wedge^+ \hat{\mathrm{UE$
- 2. UA \equiv_p CÉE by j;
- 3. $(|\hat{\text{UA}}_i|_{al}, |\hat{\text{UE}}_i|_{al}, |\hat{\text{UA}}_{i+1}|_{al}) \in Call;$
- 4. $(|\hat{\mathrm{UA}}_n|_{al}, |\hat{\mathrm{UE}}_n|_{al}, |\hat{\mathrm{UA}}|_{al}) \in Call; and$

then, after $Return(|\hat{UA}|_{al}, |\hat{CEE}|_{al}, j)$,

- 1. $if(|\hat{\mathbf{u}}\hat{\mathbf{A}}_i|_{al}, |\hat{\mathbf{C}}\hat{\mathbf{E}}\mathbf{E}}|_{al}, j_i) \in Summary$, then there exists path with $\hat{\mathbf{u}}\hat{\mathbf{A}}_i \equiv_p \hat{\mathbf{C}}\hat{\mathbf{E}}\mathbf{E}$ by j_i ; and
- 2. if $|\hat{\zeta}|_{al} \in Final$, then there exists path with $\hat{\mathcal{I}}(pr, \hat{d}) \equiv_p \hat{c}EE \ by \ 1$ and $\hat{c}EE \leadsto \hat{\zeta}$.

Proof. By Lemma 5 and Lemma 3.

Lemma 15 (Link Complete).

If

- 1. there exists path $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^* \hat{\text{UA}} \rightsquigarrow^+ \hat{\text{UE}} \rightsquigarrow \hat{\text{UA}}^* \rightsquigarrow^+ \hat{\text{CEE}}$ such that $\hat{\text{UA}}_i = CE_{\hat{\text{UE}}_i}();$
- 2. UA \equiv_p CÉE by j;
- 3. $(|\hat{\text{UA}}_i|_{al}, |\hat{\text{UE}}_i|_{al}, |\hat{\text{UA}}_{i+1}|_{al}) \in Call;$
- 4. $(|\hat{\text{UA}}_n|_{al}, |\hat{\text{UE}}_n|_{al}, |\hat{\text{UA}}|_{al}) \in Call; and$
- 5. $(|\hat{UA}|_{al}, |\hat{CEE}|_{al}, j) \in Summary$.

then, after $Link(|\hat{UA}_n|_{al}, |\hat{UE}_n|_{al}, |\hat{UA}|_{al}, |\hat{CEE}|_{al}, j)$,

- 1. if $CA(|\hat{uE}_n|_{al}, j) = k$, then preconditions for $Return(|\hat{uA}_n|_{al}, |\hat{cEE}|_{al}, CP(|\hat{uA}_n|_{al}, k))$ are met and its postconditions hold; and
- 2. if $CA(|\hat{\text{UE}}_n|_{al}, j) = clam$, then preconditions for $\textit{Update}(|\hat{\text{UA}}_n|_{al}, |\hat{\text{UA}}|_{al}, |\hat{\text{UE}}_n|_{al})|\hat{\text{CEE}}|_{al}j$ are met and its postconditions hold.

Proof. By cases on $CA(|\hat{u}_{E_n}|_{al}, j)$, induction on Lemma 14, and Lemma 16.

Lemma 16 (Update Complete).

If there exists path $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^* \hat{\mathrm{UA}} \rightsquigarrow^+ \hat{\mathrm{UE}} \rightsquigarrow \hat{\mathrm{UA}}^* \rightsquigarrow^+ \hat{\mathrm{CEE}}$ such that $\hat{\mathrm{UA}}^* \equiv_p \hat{\mathrm{CEE}}$ by j and $CA(\hat{\mathrm{UE}}, j) = clam$, then, after $\textit{Update}(\hat{\mathrm{UA}}, \hat{\mathrm{UA}}^*, \hat{\mathrm{UE}})\hat{\mathrm{CEE}}j$ such that $|\hat{\mathrm{UA}}|_{al} = \hat{\mathrm{UA}}$, $|\hat{\mathrm{UE}}|_{al} = \hat{\mathrm{UE}}$, $|\hat{\mathrm{UA}}^*|_{al} = \hat{\mathrm{UA}}^*$, and $|\hat{\mathrm{CEE}}|_{al} = \hat{\mathrm{CEE}}$, $(\hat{\mathrm{UA}}, \hat{\boldsymbol{\zeta}}) \in Seen$ and there exists $p' \equiv p \rightsquigarrow \hat{\boldsymbol{\zeta}}$ such that $\tilde{\boldsymbol{\zeta}} = |\hat{\boldsymbol{\zeta}}|_{al}$.

Proof. By Lemma 4 and Lemma 9.

Lemma 17 (Final Complete).

If, for CEE, there exists path $p \equiv \hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^+$ CEE such that $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \equiv_p$ CEE by 1 and $|\text{CEE}|_{al} = \text{CEE}$, then, after Final(CEE), $\tilde{\varsigma} \in Final$ and $\hat{\mathcal{I}}(pr, \hat{\boldsymbol{d}}) \rightsquigarrow^+$ CEE $\leadsto \hat{\varsigma}$ where $|\hat{\varsigma}|_{al} = \tilde{\varsigma}$.

Proof. By Lemma 3.