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Theories of higher-order must-alias analysis, often under the guise of environment analysis, provide deep
behavioral insight. But these theories—in particular those that are most insightful otherwise—can reason
about recursion only in limited cases. This weakness is not inherent to the theories but to the frameworks in
which they’re defined: machine models which thread the heap through evaluation. Since these frameworks
allocate each abstract resource in the heap, the constituent theories of environment analysis conflate co-live
resources identified in the abstract, such as recursively-created bindings. We present heap fragments as a
general technique to allow these theories to reason about recursion in a general and robust way. We instantiate
abstract counting in a heap-fragment framework and compare its performance to a precursor entire-heap
framework. We also sketch an approach to realizing binding invariants, a more powerful environment analysis,
in the heap-fragment framework.
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1 HIGHER-ORDER MUST-ALIAS ANALYSIS
The ability to tell when two references1 in higher-order programs must alias unlocks a host of
optimizations—both mundane [Might 2007a; Shivers 1991] and intricate [Might 2010; Steckler and
Wand 1997]—and automated verification techniques [Might 2007b; Might et al. 2007].

But control-flow analysis alone does not provide this ability. Control-flow analysis (CFA) com-
putes an abstract overapproximation of the values to which each expression evaluates, and so
implicitly computes only may-alias facts: two expressions may alias if their abstract values overlap.
Neither do techniques designed for first-order programs provide this ability. Several aspects

of higher-order program behavior are qualitatively different than their first-order counterparts.
Binding behavior is a prime example as, in higher-order programs, bindings may be captured in
closures and flow as data.
Thus, higher-order must-alias analysis requires facilities designed specifically to cope with

higher-order phenomena like binding behavior. (We examine this requirement more in § 2.)
1In addition to variable references, we consider expressions in the programming language and its metalanguage to be
references.
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96:2 Kimball Germane and Jay McCarthy

1.1 The State of the Art
Presently, the most powerful and general theories of higher-order must-alias analysis are formulated
in a framework based on abstract machines. This framework is a precursor to the Abstracting
Abstract Machines (AAM) [Van Horn and Might 2010] framework and essentially an instantiation
of it. (Every property of AAM significant to us here is also a property of this framework.)

AAM is nearly ideal for expressing higher-order must-alias analyses for several reasons:

• It offers tunable polyvariance which analyses can both access and influence [Gilray et al.
2016a; Might and Manolios 2009].

• It permits analyses to introspect and act on the current machine state to increase analysis
precision (e.g. garbage collection [Earl et al. 2012; Might and Shivers 2006b] and strong
update [Chase et al. 1990]).

• It allows analyses to incorporate semantic ghost state or synchronize with sister analyses to
track ephemeral properties [Might 2007b, 2010; Might and Shivers 2006a].

But, along with these compelling capabilities, each must-alias analysis formulated in AAM
inherits an acute limitation: recursion. To illustrate, consider the program to the right. The

(lambda (m)
(letrec ([loop

(lambda (n)
(if0 n

n
(+ (loop (- n 1))

n)))])
(loop m)))

variable n is bound by the recursive loop and, be-
cause n is referenced after the recursive call, the
number of co-live bindings to n is not static. AAM,
however, can distinguish between only a static num-
ber of co-live bindings, determined by its level of
polyvariance. Thus, while it is obvious from our van-
tage that each instance of n is local to its binding
invocation, AAM-based must-alias analyses conflate
instances of n across invocations.
In some cases, a seemingly-benign program transformation circumvents this limitation. In this

program, for instance, a transposition of the arguments to + renders n dead by the recursive call, so
that only a static number (one, in fact) of bindings are co-live at any given time. But cases like this
are little reason to rejoice: a seemingly-benign program transformation can just as easily activate
this limitation. And it applies only in some cases, as the continuation of the recursive call may
genuinely depend on such bindings.
The limited ability AAM-based analyses have to reason about recursion is intrinsic to the

AAM framework itself. To see why, we need to examine what this framework both provides and
prescribes. The AAM framework provides a recipe to move from a concrete interpreter to a sound,
computable abstract interpreter, where each is defined in terms of a small-step abstract machine.
To provide this, the AAM framework prescribes redirecting all abstract machinery through the
heap. AAM then induces computability by finitizing the heap’s address space, thereby finitizing the
execution space. (It ensures soundness by permitting multiple values to reside at a single address
and nondeterministically choosing which to return.)

Because all abstract machinery allocated in the heap, the heap serves as a path-global repository
of analysis information or, more pessimistically, a path-global chokepoint of precision.

1.2 Heap Fragments
To address this limitation, we use the recently-developed technique of decomposing the heap into
heap fragments [Germane and Adams 2020].With this technique, no abstract state by itself maintains
the entire heap. Instead, each abstract state maintains only the fragment of the heap relevant to
it, determined conservatively by reachability from its environment. The careful construction,
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separation, and combination of heap fragments simulates the presence of the entire heap. We
discuss heap fragments formally, including how to incorporate mutation, in § 6.

An analysis of the preceding program which utilized heap fragments would analyze each invo-
cation of loop in a fragment including bindings for (only) loop and n—those reachable from its
environment. Because neither of these bindings escape, the analysis is able to fully isolate each
binding. We walk through several examples in more depth in § 3.6.

However, Germane and Adams’s formulation of heap fragments prevents it from being applied to
the finite-state models AAM produces. These models don’t provide enough structure to manipulate
fragments in a sound and precise way. It builds instead on the pushdown models produced by
stack-precise CFAs, now a standard approach to CFA [Darais et al. 2017; Gilray et al. 2016b; Johnson
and Van Horn 2014; Vardoulakis and Shivers 2010; Wei et al. 2018]. Pushdown models guarantee
that procedures return precisely to their point of call, which provides the structure necessary to
effectively use heap fragments.

The shift from the finite-state models produced by AAM to the pushdown models produced by
stack-precise CFAs implies a shift from execution snapshots embodied by an abstract state 𝜍 to
execution summaries embodied by a pair 𝜍 ⇓ 𝑟 of a configuration 𝜍 and result 𝑟 .

This shift has non-trivial ramifications on the encoding of must-alias relationships. As a snapshot
of execution, an abstract state encodes must-alias relationships within its structure. By contrast,
an execution summary encodes the change in must-alias relationships across the execution it
summarizes. To successfully use the heap fragment technique for must-alias analysis, our primary
task will be to reformulate snapshot-based theories of it into summary-based theories.

1.3 Contributions
To show the effectiveness of heap fragments, we do the following:

• We devise HFAC (§ 7), a heap fragment-based CFA which incorporates abstract count-
ing [Might and Shivers 2006b]. We show how to compute it (§ 8), prove it sound (§ 9), and
empirically evaluate its performance against the original AAM-based formulation of abstract
counting (§ 11).

• We outline a minor modification to HFAC to implement binding invariants [Might 2010]
which unlocks more powerful optimizations (§ 10).

• We discuss how Facchinetti et al. [2017]’s use of relative store fragments compares to a heap
fragment-based CFA built on the ΔCFA [Might and Shivers 2006a] theory of environments
(§ 12).

2 THE CHARACTER OF HIGHER-ORDER MUST-ALIAS ANALYSIS
Palsberg [1995] characterized higher-order analysis generally by the equation

higher-order analysis = first-order analysis + closure analysis

which remarks on the qualitative effect of _ with respect to a program’s control flow. _ is indeed
a control construct but is also an environment construct: the evaluation of a _ captures ambient
environment bindings and transports them wherever the enclosed _ flows. Thus, _ has a qualitative
effect on environment behavior as well.

Environment behavior is arguably as fundamental to overall higher-order program behavior as
control flow—so fundamental that Shivers [Shivers 1991, Ch. 8] designated environment analysis
for environments the analogue of control-flow analysis for control flow. Environment analysis is
intrinsic to higher-order must-alias analysis both because it answers must-alias questions about
environment bindings and because many properly must-alias questions hinge on environment
questions since bindings themselves refer to must-alias scrutinees. Let’s take a closer look at each
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of these. (The following examples are meant to illustrate only the complications environment
behavior can introduce and not instances that can be reasoned about in no other way.)

Environment behavior is subtle, and Shivers’ now-canonical example of its subtlety [Shivers 1988]

(let ([f (_ (x h) (if (zero? x) (h) (_ () x)))])
(f 0 (f 42 #f)))

remains illustrative: In the program
to the right, almost any CFA can tell
that, when (h) has control, only clo-
sures over (_ () x) are bound to h. Given that x, the free variable captured in the closure, is in
scope at (h), is appears that (_ () x) can be inlined at (h). But doing so changes the program’s
result from 42 to 0 and is thus unsafe. Where does this reasoning fall short? The result of the
inner call to f captures a local binding of x, the capturing closure providing a vehicle for its escape.
This closure flows into the outer call to f, a distinct invocation with its own binding of x. Thus
two distinct bindings of x are reachable from the outer call’s environment, a possibility the prior
analysis failed to consider.

Now appropriately wary of surface-level equivalence in environments, we may fail to determine
in the program to the right that the targets of set-box! and unbox are in fact precisely the same box

(let ([b (box 42)])
(let ([f (_ (mutate! get) (begin (mutate! 35) (unbox (get))))])
(f (_ (x) (set-box! b x)) (_ () b))))

whose exact value
is known (and
likely in hand)
at (unbox b).
Sufficiently powerful environment analysis reactivates our ability to perform must-alias reasoning.
Not only can must-alias reasoning be used to justify optimizations, as in the preceding ex-

ample, but it can also be used during the analysis to improve precision of the underlying flow
analysis. For example, when an analysis reaches the set-box! in the program to the left, it can

(let ([f (_ (b x) (set-box! b x))])
(let ([b0 (box 42)])
(begin (f b0 35) (unbox b0))))

conservatively add the value of x to the values of b
or, if it can tell that bmust alias b0, it can replace the
current value of b with x. In the former and typical
case without must-alias reasoning available, the flow

analysis concludes that the unbox can produce 42 or 35, whereas it concludes only 35 in the latter.
Such imprecision is not contained to only its point of introduction; Might and Shivers [2006b]
discuss how it can lead to other breaches of precision which in turn lead to others, creating a
negative feedback loop that damages the overall precision of the analysis.

3 ABSTRACT COUNTINGWITHOUT ANDWITH HEAP FRAGMENTS
Now that we’ve seen a few examples of environment behavior, we can take a closer look at how to
reason about it. Since Shivers first designated it, a wide variety of theories of environment analysis
have been developed [Bergstrom et al. 2014; Facchinetti et al. 2017; Germane and Might 2017; Might
2010; Might and Shivers 2006a,b; Shivers 1991; Steckler and Wand 1997]. In this section, we focus
on abstract counting, one of the most powerful and general of these theories, both without and
with heap fragments.

3.1 Abstract Counting
In a CFA, a finite number of abstract resources represent a possibly unbounded number of concrete
resources. For instance, a central resource in a CFA is the finite pool of abstract addresses. At
any given time, an abstract address 𝛼 may represent zero concrete addresses (i.e. it represents
unallocated memory), one concrete address, or multiple concrete addresses.
To be conservative in general, we must assume that an abstract resource represents multiple

concrete resources. When accessing an abstract address in the heap, for example, we must assume
that it represents multiple addresses.
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However, if we knew that 𝛼 represented only a single concrete address, then we would know
that any two references to 𝛼 must be referring to precisely the same concrete object. If 𝛼 houses an
environment binding, we can apply this fact to safely equivocate bindings, enabling inlining and
copy propagation [Might 2007a, Ch. 10]. If 𝛼 instead houses the contents of a box, we can apply
this fact to safely overwrite the previous box value with a new one rather than joining the two
values, a technique known as strong update [Chase et al. 1990].

The idea behind abstract counting is simply to include with each heap entry an abstract count of
the number of times that address has been allocated: 0, 1, or ∞ (representing multiple).

3.2 Garbage Collection
Abstract counting allows an analysis to introspect to know when its abstraction is precise but
offers no way to recover precision. In practice, abstract garbage collection [Might and Shivers
2006b] nearly always accompanies abstract counting. Abstract garbage collection works just like
concrete garbage collection: the environment and continuation registers of the abstract state are
crawled to obtain a root set and all heap entries not transitively reachable from this root set are
collected. Its purpose however is entirely different. In the concrete, garbage collection in an abstract
machine has no semantic effect by definition. In the abstract, garbage collection increases analysis
precision by expunging stale heap entries before their addresses are reused, thereby avoiding
multiple simultaneous allocations at these addresses.

3.3 Limitations of AAM-Based Abstract Counting
With a better understanding of abstract counting, let’s see how it fares on the example program
from the introduction. We’ll assume a 0CFA so that the address space is simply the set of program
variables, but our reasoning applies to polyvariant CFAs too.

We apply this program to ⊤num, the abstract value representing a fixed but unknown number. As
the program is entered, m is bound and represents exactly one concrete binding. Evaluation of the
letrec does the same for loop. At this point, no bindings have been made to n. After the function
and arguments have been evaluated, but before the call has been made, the abstract state is garbage
collected. Due to the letrec, the binding of loop is reachable from the closure bound to it. The
binding of m is unreachable from that closure, its own value, and the (empty) continuation and is
reaped from the heap. When the loop’s closure is entered, n acquires its first abstract binding and
has an abstract count of 1. Because ⊤num, the value of n, may or may not be 0, the analysis explores
both branches. In the first, the call returns ⊤num. The second calls loop recursively. Again, once
the function and argument are evaluated but before the call is made, the heap is garbage collected.
The function is the closure bound to loop which reaches loop. The value is ⊤num which doesn’t
reach anything. The continuation reaches n, because n is live after the call. Each binding in the
heap is reachable, so garbage collection doesn’t reap anything. Now the analysis makes the call,
binding n. Now n’s binding in the heap, which previously represented a single concrete binding,
represents multiple concrete bindings. Its abstract count is incremented to ∞ accordingly. Analysis
of this invocation proceeds just as the first invocation’s. The abstract state reached when the third
call is made is identical to the second’s, so the analysis concludes with two abstract invocations:
one representing the first when n’s abstract binding represents a single concrete binding and
one representing the unbounded others when n’s abstract binding represents multiple concrete
bindings.

It’s also more clear now why transposing the arguments to + improves the precision: when n is
not referenced after the recursive call, it’s not reachable by the continuation and can be reaped
before the recursive call is made. When that call is made and binds n, it does so in a heap with no
resident binding of n, so its binding has count 1.
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3.4 Stack Precision and Garbage Collection are Not Enough
By producing a pushdown model of control flow rather than a finite-state one, stack-precise
CFAs [Vardoulakis and Shivers 2010] boast a (colloquial) quantum leap in precision. In exchange
for this precision, stack-precise CFAs turn control of the continuation—once a component of the
abstract state—over to the framework, where access to it is limited. Despite this limited access,
several formulations of abstract garbage collection have been achieved in this setting, using a
variety of means to provide the stack root set of addresses to the analysis [Darais et al. 2017; Earl
et al. 2012; Johnson and Van Horn 2014].
But even abstract counting adapted to this setting would be unable to reliably reason about

recursion. While some spuriously-large abstract counts would likely disappear due to its higher
precision, others would necessarily remain. After all, some bindings are genuinely necessary to the
continuation and a more precise modelling of the continuation will only underscore such cases.

3.5 Heap Fragments

(1) ∅
(let* ([f (_ (x) x)]

[a (f 10)]
[b (f a)])

(+ a b))
(2) ∅

(let* ([f •]
[a (f 10)]
[b (f a)])

(+ a b))
(3) {(f, {(_ (x) x)})}

(let* ([a (f 10)]
[b (f a)])

(+ a b))
(4) {(f, {(_ (x) x)})}

(let* ([a •]
[b (f a)])

(+ a b))
(5) {(f, {(_ (x) x)}), (a, {10})}

(let* ([b (f a)])
(+ a b))

(6) {(a, {10})}
(let* ([b •])
(+ a b))

(7) {(a, {10}), (b, {10})}
(+ a b)

Heap fragments remove the dependence of evaluation
on the continuation entirely. Let’s see how with some ex-
amples. To simplify our presentation, we will assume 0CFA
for all of our examples, so that variables serve as addresses.
Accordingly, we omit environments and timestamps.

A heap fragment analysis of the program (1) begins in
an empty heap fragment, denoted ∅ above the program.
Once the analysis determines that (_ (x) x) is the next
expression to evaluate, it decomposes the let into the
(_ (x) x) itself and its continuation (2) and associates
∅ to each (seen above the continuation). The analysis then
evaluates (_ (x) x) to produce ({(_ (x) x)}, ∅), a pair
consisting of an abstract closure and its heap fragment
restricted to bindings reachable from it. This result is com-
bined with the heap fragment of the continuation to pro-
duce heap fragment (3) under which the analysis proceeds
to evaluate expression (3). Once again, the analysis focuses
on the next expression, (f 10) and separates it from its
continuation, seen at (4). The binding for f is reachable
from both the expression and its continuation, so the heap
fragment (4) doesn’t shrink. To evaluate (f 10), the anal-
ysis evaluates f and 10 into results ({(_ (x) x)}, ∅) and
({10}, ∅) respectively. The heap fragment associated with
the function (∅) is extended with a binding for x associated
with the argument, and all bindings reachable from the
argument in its heap fragment are copied in. The analysis
then proceeds to evaluate the function body x under the
heap fragment {(x, {10})} which immediately produces the result ({10}, ∅). This result is bound in
heap fragment (5) under which expression (5) is evaluated. This expression decomposes to (f a)
and continuation (6). Both f and a are reachable from the call expression so it is evaluated in the
heap fragment with bindings for both. Only a is reachable from continuation (6), so f’s binding is
absent from heap fragment (6).
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f evaluates to ({(_ (x) x)}, ∅), as before, and a happens to evaluate to ({10}, ∅). The analysis
has made this call before, and once it binds x to 10 in the empty environment, it will realize it,
having encountered that precise configuration previously. Rather than reevaluating the function
body, it simply returns the same result as before which is bound to b in the continuation’s heap
fragment. The analysis finally comes to expression (7) in the heap fragment (7) and the analysis
produces, under a typical abstraction of numbers, (⊤𝑛𝑢𝑚, ∅).

Although we called this closed expression a program, it could just as well have been a subexpres-
sion of a larger program. Because the use of heap fragments makes analysis and garbage collection
independent of the continuation, analysis of any closed expression, no matter where it appears,
takes place in an empty heap. More generally, this property of heap fragments makes analysis
dependent only on the bindings reachable from the free variables of the expression itself, and not
its continuation. To wit, the analysis was able to reuse the summary from the first call to f at the
second call even though they had different continuations with different reachable bindings. In this
way, the use of heap fragments makes it more likely that summaries can be reused.

3.6 Heap Fragment Abstract Counting
To formulate abstract counting with heap fragments, we need to transition from the snapshot-
centric account of AAM-based CFAs to the summary-centric account of stack-precise CFAs. In
particular, we need to go from a snapshot state 𝜍 whose heap contains abstract counts to a summary
pair 𝜍 ⇓ 𝑟 whose configuration 𝜍 and result 𝑟 encode a change in abstract count.
We achieve this by distinguishing the roles of the configuration heap fragment (part of 𝜍 ) and

the result heap fragment (part of 𝑟 ). In the configuration heap fragment, each heap entry has an
associated abstract count with precisely the same meaning as in an AAM-based CFA. Each entry
in the result heap fragment has an abstract count too, but it is used to encode the relationship to
the corresponding binding in the configuration heap fragment. Let’s look at some examples to
illustrate.

Let’s pick up evaluation of the program on the left at (_ (y) (+ y x)). The heap fragments of
both this expression and its continuation are {(x, ({42}, 1))}where the 1 indicates the abstract count

(let ([x 42])
(let ([f (_ (y) (+ y x))])
(f x)))

of x’s binding. Clearly the x’s bindings in both heap fragments
are the same, a fact wewant the analysis to preserve. The result
of evaluating this _ is ({(_ (y) (+ y x))}, {(x, ({42}, 1))}).
Its heap will be joined with the continuation’s and extended

with a binding for f. When the heaps are joined, the analysis will be tasked with joining ({42}, 1)
from the continuation heap and ({42}, 1) from the result heap. The count 1 in the result heap
indicates that it is the same binding as the continuation heap, and the join is simply ({42}, 1).

Suppose however that the result heap fragment has a binding with count 1 but that was made dur-
ing evaluation and therefore guaranteed to be distinct from those in the configuration heap fragment.

(let ([const (_ (x) (_ (y) x))])
(let ([f (const 10)]

[g (const 20)])
(+ (f 30) (g 40))))

For instance, consider the call (const 10) in the
program to the right. Once the call is entered, the
analysis evaluates (_ (y) x) in the heap fragment
{(x, ({10}, 1))} immediately producing the _ itself (as
a closure) with that precise heap. But the binding to x in
the result was made during the call, a fact that needs to be communicated to the configuration
heap. To communicate this, as the result is passed back, x’s count acquires a “freshness” flag,
transforming from 1 to 1𝐹 . This freshness flag is considered when joining the result back into the
configuration. There is no binding for x currently in the configuration, so the join is effectively of
(∅, 0) on the left and ({10}, 1𝐹 )) on the right, which becomes ({10}, 1)) in the combined heap. That
is, the freshness flag is removed once the continuation heap is introduced to its associated binding.
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Now consider the call (const 20) which, by similar reasoning, results in the closure (_ (y) x)
and the heap fragment ({20}, 1𝐹 )). In this case, the continuation’s heap contains a binding for x
already, reachable from f, with a count of 1. Thus, the join of x’s binding is ({10}, 1) on the left and
({20}, 1𝐹 )) on the right Because x’s binding in the result is known to be distinct from x’s binding
in the continuation, x must now be bound to multiple distinct concrete addresses, and the join is
({10, 20},∞)).
These examples cover the interesting cases. More mundanely, when the count on the left or the

right is ∞, the result is ∞.

3.7 Effect Logs
Heap fragments communicate allocation through explicit value flow. But, classically, the heap not
only accumulates allocation but also implicitly records mutative effects. By threading the heap
through an evaluation path, the heap communicates these effects from one part of evaluation to

(let ([b (box 42)])
(let ([y (begin

(set-box! b 35)
10)])

(+ (unbox b) y)))

another. For instance, evaluation of the expression bound to
y in the program on the right not only yields 10 but also has
an effect on the box b which the continuation relies on. The
box b is not part of the result, however, and therefore not part
of the heap fragment.
To ensure that effects actually have an effect, each evalua-

tion records an effect log of the mutations that occur. Each result contains not only a value and
associated heap fragment but also an effect log. When integrating a result with a continuation heap
fragment, the first step is to replay the log to bring that heap fragment up to date.

We’ll now look at an example which illustrates both effect logs and their interaction with abstract
counts. Consider the analysis of the program to the left at the (set-box! b 35). At this point,

(let ([b (box 42)])
(begin
(set-box! b 35)
(unbox b)))

the heap fragment of both this expression and the continuation is
{(b, ({box(𝛼42)}, 1)), (𝛼42, ({42}, 1))}. That is, b is bound to a box whose
contents are accessible at address 𝛼42 (derived from 42, the initialization
expression of the box). The value of the box—i.e. the value at address
𝛼42—is currently 42. The evaluation of a set-box! doesn’t return an

interesting value and, in any case, its value is ignored in this example. Its evaluation does produce
an effect log with a single entry. In this case, that log is {(𝛼42, ({35}, 1))}. The analysis represents
an effect log just like a result heap fragment, and replaying it on the continuation’s heap fragment
is very similar to joining it. In the continuation’s fragment, 𝛼42’s binding is ({42}, 1) and, in the
effect log, 𝛼42’s binding is ({35}, 1). When we join, with ({42}, 1) on the left and ({35}, 1) on the
right, we can tell from the abstract counts that these are the values of precisely the same concrete
binding. We are therefore justified in replacing the value on the left with the value on the right so
that their join is ({35}, 1), an instance of strong update [Chase et al. 1990]).

4 LANGUAGE
With intuition in hand, we new proceed to define HFAC formally. We define our semantics over an
ANF _ calculus [Flanagan et al. 1993] extended with boxes.

𝑒 ::= let𝑥 = 𝑐𝑒 in 𝑒 | 𝑎𝑒
𝑐𝑒 ::= (𝑎𝑒 𝑎𝑒) | box𝑎𝑒 | setbox!𝑎𝑒 𝑎𝑒 | unbox𝑎𝑒 | 𝑎𝑒
𝑎𝑒 ::= _𝑥.𝑒 | 𝑥

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 96. Publication date: August 2021.



Newly-Single and Loving It: Improving Higher-Order Must-Alias Analysis with Heap Fragments 96:9

We assume that programs are alphatized—i.e., that all binding instances are distinct—which
guarantees that bindings made at distinct program points remain distinct. We also assume that
each expression bears a unique label to distinguish it from otherwise-identical expressions, which
provides the same sort of guarantee for box allocations, which are indexed (in part) by expres-
sion. Both of these assumptions are satisfied by ANF normalization: the former by ensuring that
the converter 𝛼-converts identical binding instances to fresh names, the latter by binding each
subexpression to a distinct name, which serves as a de-facto label.

4.1 ANF Disturbs Reachability
Sabry and Felleisen [1994] remark that this normalization process has no effect on the results of
a dataflow analysis but merely gives each intermediate value a name and orders expressions so
that the evaluation order is reflected in the program structure. However, this process does affect
what is naively reachable from the continuation. To illustrate, let’s consider the non-ANF program

(let ([make-box (_ (v) (box v))])
(let ([b1 (make-box 42)])
(let ([x (let ([b2 (make-box 35)])

(unbox b2))])
(let ([ignore (set-box! b1 20)])
(unbox b1 20)))))

which uses the make-box procedure to make
two boxes, bound to b1 and b2. Consider the
behavior of an AAM-based 0CFA with abstract
counting on this program: The contents of b2
will use the same heap address as the contents
of b1, derived from (box v). Since b1 is reach-
able from the continuation, its contents persist
in the heap when b2 is created, so their co-live contents share that address. Consequently, from
the analysis’s perspective, the update of the contents of b1 via set-box! could apply to b2 as well,
so the value 20 is added to the resident values 42 and 35, and does not replace them. In a heap
fragment-based 0CFA with abstract counting, the nested let binding b2 creates an implicit local
continuation frame which isolates b2 from b1. Since b2 doesn’t outlive this frame, the analysis is
able to keep it distinct from b1. Thus, the assignment to b1 is strong and the value 20 replaces the
previous value 42.

(let ([make-box (_ (v) (box v))])
(let ([b1 (make-box 42)])
(let ([b2 (make-box 35)])
(let ([x (unbox b2))])
(let ([ignore (set-box! b1 20)])
(unbox b1 20)))))

However, ANF normalization of this program
lifts b2’s binding into the sequence of bindings
as seen on the right. This lift removes the cre-
ation of the local continuation frame and in-
tegrates its evaluation with its parent’s. Thus,
when b2 is bound, b1 is reachable from the
continuation frame. As a consequence, their
contents are merged and the abstract count of their contents saturates to ∞.
This example illustrates that heap fragments defined in terms of naive reachability remain

sensitive to certain structural transformations, even as they are oblivious to others. However,
this sensitivity occurs only locally within each invocation; heap fragments robustly isolate inter-
invocation bindings of an ANF program, including the kind induced by recursion. A straightforward
intraprocedural analysis can recover the liveness information necessary to circumvent this sensi-
tivity.

We expect the bindings of ANF-introduced variables to always be singleton since they only ever
occur once in the program. Jagannathan et al. [1998] observe that, even with this expectation, its
realization is not entirely trivial, since bindings can be captured by the continuation. By using heap
fragments, we avoid any dependence on the continuation and confirm in our evaluation that each
such binding was determined singleton (§ 11).
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𝜍 ∈ Config = Heap × Env × Exp × Time 𝑟 ∈ Result = D × Store × Time

𝜎 ∈ Heap = Addr → D 𝑑 ∈ D = Closure + Box

𝜌 ∈ Env = Var ⇀ Addr Closure = Lam × Env

𝑡 ∈ Time Box = Addr

𝛼 ∈ Addr

Fig. 1. State space for the reference semantics

Let
𝜎0 𝜌 𝑐𝑒 𝑡0 ⇓ref 𝑑0 𝜎1 𝑡1 𝛼 = alloc(var(𝑥), 𝑡1) 𝜎1 [𝛼 ↦→ 𝑑0] 𝜌 [𝑥 ↦→ 𝛼] 𝑒 𝑡1 ⇓ref 𝑑 𝜎2 𝑡2

𝜎0 𝜌 let𝑥 = 𝑐𝑒 in 𝑒 𝑡0 ⇓ref 𝑑 𝜎2 𝑡2

App
closure(_𝑥.𝑒, 𝜌0) = Aref (𝜎0, 𝜌, 𝑎𝑒0) 𝑑1 = Aref (𝜎0, 𝜌, 𝑎𝑒1)

𝑡1 = tick((𝑎𝑒0 𝑎𝑒1), 𝑡0) 𝛼 = alloc(var(𝑥), 𝑡1) 𝜎0 [𝛼 ↦→ 𝑑1] 𝜌0 [𝑥 ↦→ 𝛼] 𝑒 𝑡1 ⇓ref 𝑑 𝜎1 𝑡2
𝜎0 𝜌 (𝑎𝑒0 𝑎𝑒1) 𝑡0 ⇓ref 𝑑 𝜎1 𝑡2

Atomic-Exp

𝜎 𝜌 𝑎𝑒 𝑡 ⇓ref Aref (𝜎, 𝜌, 𝑎𝑒) 𝜎 𝑡

Box
𝑑 = Aref (𝜎, 𝜌, 𝑎𝑒) 𝛼 = alloc(exp(𝑎𝑒), 𝑡)

𝜎 𝜌 box𝑎𝑒 𝑡 ⇓ref box(𝛼) 𝜎 [𝛼 ↦→ 𝑑] 𝑡

Set-Box!
box(𝛼) = Aref (𝜎, 𝜌, 𝑎𝑒0) 𝑑 = Aref (𝜎, 𝜌, 𝑎𝑒1)

𝜎 𝜌 setbox!𝑎𝑒0 𝑎𝑒1 𝑡 ⇓ref closure(_x.x,⊥) 𝜎 [𝛼 ↦→ 𝑑] 𝑡

Unbox
box(𝛼) = Aref (𝜎, 𝜌, 𝑎𝑒)

𝜎 𝜌 unbox𝑎𝑒 𝑡 ⇓ref 𝜎 (𝛼) 𝜎 𝑡

Fig. 2. Big-step rules for the reference semantics

5 REFERENCE SEMANTICS
To ensure that the intricate separation and recombination of heap fragments faithfully implements
the expected semantics, we define a standard reference semantics which does not decompose the
heap.

Figure 1 defines the semantic constituents. A configuration 𝜍 is a 4-tuple consisting of a heap 𝜎 ,
an environment 𝜌 , an expression 𝑒 , and a timestamp 𝑡 . From a configuration, evaluation produces a
result 𝑟 consisting of a denotable 𝑑 , a heap 𝜎 , and a timestamp 𝑡 . A heap 𝜎 maps addresses 𝛼 to
denotables 𝑑 , and we often treat them extensionally as a set of address–denotable pairs. The alloc
function produces addresses from a variable or expression and timestamp.

alloc : (Var + Exp) × Time → Addr

We leave addresses and the definition of alloc abstract and require only that alloc be injective. A
timestamp 𝑡 is a sequence of call sites of the interpreted program. A denotable𝑑 is either a closure—a
_ paired with an environment—or a box which consists solely of an address. An environment 𝜌 is a
finite map from variables to addresses.
Evaluation produces big-step judgements of the form 𝜍 ⇓ref 𝑟 which summarize the derivation.

Figure 2 presents the rules which establish such judgements. We evaluate a let by evaluating the
bound call expression, making a fresh binding of its value, and evaluating the body, the result of
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which becomes the result of the entire expression. We evaluate an application by evaluating the
function expression to a closure and argument expression to a value. We obtain the next evaluation
timestamp using tick, which derives it from the call site itself and current timestamp.

tick : App × Time → Time

We leave its definition abstract and, like alloc, require only that it’s injective. For a 𝑘-CFA-style
context abstraction, we can instantiate Time = App∗ so that the timestamp is a finite sequence of
application sites and tick as the identity function so that the timestamp records the application sites
as they are encountered during evaluation. We evaluate an atomic expression using Aref , defined

Aref (𝜎, 𝜌, 𝑥) = 𝜎 (𝜌 (𝑥)) Aref (𝜎, 𝜌, _𝑥 .𝑒) = closure(_𝑥 .𝑒, 𝜌)

which simply looks up variables and closes _s with an environment.
The next three rules implement state. The Box rule allocates a fresh location in the heap using

the timestamp and the box expression and yields a box with that now-populated location.2 The
Set-Box! rule identifies a box and a denotable 𝑑 . It updates the heap so that the previously-allocated
address 𝛼 now locates 𝑑 . It returns the identity function as a dummy value. Finally, the Unbox rule
identifies a box and yields the denotable to which its address points.

This semantics treats the heap in a completely standard way. In particular, each configuration and
result contains an entire heap and the rules thread the heap through evaluation, communicating
allocations and state changes to later evaluation.

6 HEAP FRAGMENT SEMANTICS
Armed by the reference semantics with a ground truth of evaluation, we now define a semantics
which decomposes the heap into fragments and propagates side effects via an effect log. The primary
aim of this semantics, codified later by theorem, is to faithfully reconstitute global heap behavior
by propagating local heap activity from one fragment to another.

The state space is largely the same as the reference semantics. Heap fragments 𝜎 replace full heaps
in configurations and results, and results accrue an effect log b . A heap fragment is structurally the
same as a heap. An effect log is a sequence of mutation entries (𝛼,𝑑, 𝜎𝑑 ) consisting of an address 𝛼 ,
denotable 𝑑 , and heap fragment 𝜎𝑑 .

𝜍 ∈ �Config = Fragment × Env × Exp × Time 𝑟 ∈ �Result = D × Fragment × Log × Time

𝜎 ∈ Fragment = Addr → D b ∈ Log = Entry∗ Entry = Addr × D × Fragment

As with the reference semantics, evaluation in the heap fragment semantics is defined in terms
of a big-step judgement 𝜍 ⇓ 𝑟 which summarizes its derivation. The rules which establish these
judgements ensure that configurations and results are minimized by garbage collection. Figure 3
defines garbage collection. The gcin function garbage collects a configuration by restricting the
environment 𝜌 to only the free variables of 𝑒 and restricting the heap fragment 𝜎 to only the
addresses reachable from 𝜌 |𝑒 . The set R𝜌 (𝜎, 𝜌) of addresses reachable from 𝜌 in 𝜎 is defined in
terms of the reflexive, transitive closure of{𝜎 which relates when one address can reach another
through one dereference in 𝜎 . The relation{𝜎 itself is defined in terms of the set of addresses that
a value 𝑑 touches, given by T . The gcout function garbage collects a result heap fragment 𝜎𝑑 by
restricting it to the addresses reachable from its corresponding value 𝑑 .

In addition to producing a result value 𝑑 and corresponding heap fragment 𝜎𝑑 , each evaluation
also produces an effect log b . The effect log records the mutations performed during evaluation;

2We assume some scheme to distinguish otherwise-identical expressions, such as expression labels.
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gcin (𝜎, 𝜌, 𝑒) = gc
∗
in (𝜎, 𝜌 |𝑒 , 𝑒) gc

∗
in (𝜎, 𝜌, 𝑒) = (𝜎 |R𝜌 (𝜎,𝜌) , 𝜌, 𝑒) gcout (𝑑, 𝜎𝑑 ) = (𝑑, 𝜎𝑑 |R𝑑 (𝜎𝑑 ,𝑑) )

R𝜌 (𝜎, 𝜌) = {𝛼 ′ : 𝛼 ∈ rng(𝜌), 𝛼 {∗
𝜎 𝛼 ′} T (box(𝛼)) = {𝛼}

R𝑑 (𝜎𝑑 , 𝑑) = {𝛼 ′ : 𝛼 ∈ T (𝑑), 𝛼 {∗
𝜎𝑑

𝛼 ′} T (closure(_𝑥.𝑒, 𝜌)) = rng(𝜌)
𝛼 {𝜎 𝛼 ′ ⇐⇒ 𝛼 ′ ∈ T (𝜎 (𝛼))

Rbox (𝜎) = {𝛼 : box(𝛼) ∈ rng(𝜎)}
gcb (b, 𝜎) = b |Rbox (𝜎)

Fig. 3. The gcin, gcout , and gcb functions

each triple (𝛼,𝑑, 𝜎𝑑 ) denotes an update to heap location 𝛼 to value (𝑑, 𝜎𝑑 ). We denote the replay of
an effect log b on a heap fragment 𝜎 by b (𝜎) defined

⟨⟩(𝜎) = 𝜎 ((𝛼,𝑑, 𝜎𝑑 ) :: b) (𝜎) = (b (𝜎) ∪ 𝜎𝑑 ) [𝛼 ↦→ 𝑑]
The effect logs b0 and b1 of a sequence of evaluations can be composed, denoted b0 ◦ b1, by simply
appending the logs.
If a particular evaluation allocates a box, mutates its contents, and then discards it, the effect

log will have a record of the mutation of a box unreachable by the configuration heap fragment
𝜎 . To remove such records, the gcb function in Figure 3 garbage collects a result effect log b by
restricting the entries to those whose target is reachable by the configuration heap fragment. The
semantic rules use gcb to ensure that each result effect log contains only entries relevant to the
configuration.
Since the union operation treats the store extensionally, we are obliged to show effect logs

maintain the functionality of the heap, even amid composition and garbage collection.

Theorem 6.1. If 𝜎 𝜌 𝑒 𝑡0 ⇓ (𝑑, 𝜎𝑑 ) b 𝑡1, then, for all (𝛼, _, _) ∈ b , 𝛼 ∈ rng(𝜎) and b (𝜎) is a function.
This result follows from the fact that, for 𝛼 ∈ dom(b (𝜎)) ∩ dom(𝜎𝑑 ), b (𝜎) (𝛼) = 𝜎𝑑 (𝛼), which

we establish by induction on the derivation.
The heap fragment semantic rules can be seen in Figure 4. The atomic evaluation function A

produces a pair (𝑑, 𝜎𝑑 ) of a denotable 𝑑 and its minimal heap fragment 𝜎𝑑 . The Atomic-Exp rule is
a thin wrapper over this function and yields an empty effect log.
The Box rule evaluates the value to box, allocates an address for it, and yields a box with its

minimal heap fragment. The Unbox rule evaluates a box itself and yields its value and minimal
heap fragment produced by gcout . Both of these rules yield an empty effect log. The Set-Box! rule
yields the identity function (a closed value) and a correspondingly empty heap fragment. Rather
than recording its mutation in the heap, the Set-Box! rule records it in a single-entry effect log,
where [𝛼 ↦→ (𝑑, 𝜎𝑑 )] denotes the sequence ⟨(𝛼,𝑑, 𝜎𝑑 )⟩. This is the only rule which creates a new
effect log, as opposed to the Let and App rules which adjust and combine them.

The Let rule first evaluates its let-bound expression in a minimal configuration. This evaluation
ensures the resultant log mutates only boxes reachable from 𝜎 (minimized to 𝑐𝑒 and 𝜌). It replays
this log to bring 𝜎 in accord with 𝜎𝑑0 before extending 𝜎 by (𝑑, 𝜎𝑑0) at a fresh address. It then
evaluates the let body in that extended heap fragment, minimized by gcin. The effect log b1 produced
by its evaluation is garbage-collected with respect to 𝜎 and composed with b0.
The App rule atomically evaluates the function and argument, allocates a fresh address to bind

the argument, and evaluates the function body in a minimal configuration binding the argument.
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Let
gcin (𝜎, 𝜌, 𝑐𝑒) 𝑡0 ⇓ (𝑑0, 𝜎𝑑0) b0 𝑡1

𝛼 = alloc(var(𝑥), 𝑡1) gcin (b0 (𝜎) [𝛼 ↦→ (𝑑0, 𝜎𝑑0)], 𝜌 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇓ (𝑑, 𝜎𝑑 ) b1 𝑡2
𝜎 𝜌 let𝑥 = 𝑐𝑒 in 𝑒 𝑡0 ⇓ (𝑑, 𝜎𝑑 ) gcb (b1, 𝜎) ◦ b0 𝑡2

App
(closure(_𝑥 .𝑒, 𝜌0), 𝜎𝑑0) = A(𝜎, 𝜌, 𝑎𝑒0) (𝑑1, 𝜎𝑑1) = A(𝜎, 𝜌, 𝑎𝑒1) 𝑡1 = tick((𝑎𝑒0 𝑎𝑒1), 𝑡0)

𝛼 = alloc(var(𝑥), 𝑡1) gcin (𝜎𝑑0 [𝛼 ↦→ (𝑑1, 𝜎𝑑1)], 𝜌0 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇓ (𝑑, 𝜎𝑑 ) b 𝑡2
𝜎 𝜌 (𝑎𝑒0 𝑎𝑒1) 𝑡0 ⇓ (𝑑, 𝜎𝑑 ) b 𝑡2

Box
(𝑑, 𝜎𝑑 ) = A(𝜎, 𝜌, 𝑎𝑒) 𝛼 = alloc(exp(𝑎𝑒), 𝑡)
𝜎 𝜌 box𝑎𝑒 𝑡 ⇓ (box(𝛼),⊥[𝛼 ↦→ (𝑑, 𝜎𝑑 )]) ⟨⟩ 𝑡

Unbox
(box(𝛼), 𝜎𝛼 ) = A(𝜎, 𝜌, 𝑎𝑒)

𝜎 𝜌 unbox𝑎𝑒 𝑡 ⇓ gcout (𝜎𝛼 (𝛼), 𝜎𝛼 ) ⟨⟩ 𝑡

Set-Box!
(box(𝛼), 𝜎𝛼 ) = A(𝜎, 𝜌, 𝑎𝑒0) (𝑑, 𝜎𝑑 ) = A(𝜎, 𝜌, 𝑎𝑒1)

𝜎 𝜌 setbox!𝑎𝑒0 𝑎𝑒1 𝑡 ⇓ (closure(_x.x,⊥),⊥) [𝛼 ↦→ (𝑑, 𝜎𝑑 )] 𝑡

Atomic-Exp

𝜎 𝜌 𝑎𝑒 𝑡 ⇓ A(𝜎, 𝜌, 𝑎𝑒) ⟨⟩ 𝑡

Fig. 4. The heap fragment semantics

The result of the call is the result of the function body evaluation. The effect log of the call is
the effect log of the function body evaluation, restricted to entries reachable from the call heap
fragment 𝜎 .

6.1 Faithful Heap Reconstruction
Although the heap management of this semantics is significantly different to that of the reference
semantics, the results that each produces are the same modulo the heap. Now we establish that the
heap fragment semantics and reference semantics agree on produced results, modulo the pruning
due to garbage collection. In particular, a concrete configuration yields a result if and only if the
heap fragment configuration produced by gcin produces that result mapped through gcout .

Theorem 6.2. If 𝜎0 is closed under reachability with respect to 𝜌 , then 𝜎0 𝜌 𝑒 𝑡0 ⇓ref 𝑑 𝜎1 𝑡1 if and
only if gcin (𝜎0, 𝜌, 𝑒) 𝑡0 ⇓ gcout (𝑑, 𝜎1) b 𝑡1 where b (𝜎0) ⊆ 𝜎1

7 HEAP FRAGMENT ABSTRACT COUNTING
Armed with a concrete heap fragment semantics that faithfully captures heap behavior, we now
turn to obtaining an abstract heap fragment semantics which incorporates abstract counting. We
present the semantics in this section and, in the sections following, show how to compute the
analysis and prove it sound.

7.1 State Space
We arrive at computability by finitizing the heap fragment address space, a standard technique
in both finite-state [Van Horn and Might 2010] and pushdown [Darais et al. 2017] CFAs, and by
finitizing the log space. Figure 5 presents the abstract state space.
To finitize the address space, we finitize the space of timestamps from which addresses are

derived. We abstract Time as �Time
𝑘
= App≤𝑘 which denotes sequences of at-most 𝑘 applications,

where 𝑘 is a parameter of the analysis. With �Time
𝑘
bounded, the address space �Addr becomes
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𝜍 ∈ �Config = �Fragment × Ênv × Exp × �Time 𝑟 ∈ �Result = �̂� × �FragmentR × L̂og × �Time

�̂� ∈ �Fragment = �Addr → �̂� × N̂ N̂ = {0, 1,∞}

�̂�𝑑 ∈ �Fragmentresult = �Addr → �̂� × N̂𝐹 N̂𝐹 = {0, 1, 1𝐹 ,∞}
𝑑 ∈ �̂� = P(𝑉 )

𝑣 ∈ 𝑉 = �Closure + B̂ox �Closure = Lam × Ênv

𝜌 ∈ Ênv = Var ⇀ �Addr B̂ox = �Addr
b̂ ∈ L̂og = �Fragmentresult 𝑡 ∈ �Time

𝑘
= App≤𝑘

Fig. 5. Finite state space of the abstract heap fragment semantics

bounded and, in turn, so do the spaces of boxes, environments, closures, and values. With �Addr
bounded, �alloc produces a finite set of addresses. With a finite number of addresses, we cannot
obtain a fresh address at will and therefore some abstract values will share an address. We abstract
�̂� to a set of values 𝑉 , each of which is a closure or box.

Configuration heap fragments include an abstract count for each heap entry. Result heap frag-
ments include an abstract count extended to include the count 1𝐹 denoting an abstract address
which represents a single concrete address which was allocated during evaluation.

To finitize the space of effect logs, we represent them as heap fragments which represent a
compound update to a store. Like result heap fragments, abstract effect logs carry an extended
abstract count with each entry. Depending on the abstract counts of the constituents, some of the
updates are strong, replacing the value at their address, and others aren’t, merely joining with it.

7.2 Semantics
The abstract semantics is defined in terms of a judgement �̂� 𝜌 𝑒 𝑡 ⇓̂ (𝑑, �̂�𝑑 ) b̂ 𝑡 . Figure 6 presents the
set of rules which establish this judgement, which are in one-to-one correspondence with the set of
concrete rules. Like the concrete semantics, the abstract semantics uses garbage collection to ensure
that configurations and results are minimized and the ĝcin ĝcout functions are straightforward
abstract adaptations of their concrete counterparts. (The ĝcb function is not as straightforward due
to the drastically different representation of abstract effect logs.)

We work our way through the rules from least- to most-affected by the abstraction. The Atomic-
Exp rule for evaluating atomic expressions is unchanged, modulo the use of Â instead of A.
The Unbox and Set-Box! rules nondeterministically produce results for each box denoted by

the atomic expression. The Box rule allocates an address 𝛼 and uses mark to possibly mark it as
fresh in the result heap.

The App rule is nondeterministic in the function. Any entry for 𝛼 in result heap and effect log are
marked as fresh since 𝛼 is allocated during evaluation of the rule. Otherwise, the App rule perfectly
corresponds to its concrete counterpart.

The Let rule marks 𝛼 in the result heap and effect log just as it does for App. In addition, it uses
mark

∗ to propagate freshness from the intermediate result heap to the final result heap and effect
log.

We define the abstract operations in the following sections.
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Let
ĝcin (�̂�0, 𝜌, 𝑐𝑒) 𝑡0 ⇓̂ (𝑑0, �̂�𝑑0) b̂0 𝑡1

𝛼 = �
alloc(var(𝑥), 𝑡1) ĝcin (b̂0 (�̂�0) [𝛼 ↦→ (𝑑0, �̂�𝑑0)], 𝜌 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇓̂ (𝑑, �̂�𝑑 ) b̂1 𝑡2

�̂�0 𝜌 let𝑥 = 𝑐𝑒 in 𝑒 𝑡0 ⇓̂ (𝑑,mark
∗ (mark(�̂�𝑑 , 𝛼), �̂�𝑑0)) ĝcb (mark

∗ (mark(b̂1, 𝛼), �̂�𝑑0), �̂�0)◦̂b̂0 𝑡2

App
(𝑑0, �̂�𝑑0) = Â(�̂�, 𝜌, 𝑎𝑒0)

closure(_𝑥 .𝑒, 𝜌0) ∈ 𝑑0 (𝑑1, �̂�𝑑1) = Â(�̂�, 𝜌, 𝑎𝑒1) 𝑡1 = t̂ick((𝑎𝑒0 𝑎𝑒1), 𝑡0)
𝛼 = �

alloc(var(𝑥), 𝑡1) ĝcin (�̂�𝑑0 [𝛼 ↦→ (𝑑1, �̂�𝑑1)], 𝜌0 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇓̂ (𝑑, �̂�𝑑 ) b̂ 𝑡2
�̂� 𝜌 (𝑎𝑒0 𝑎𝑒1) 𝑡0 ⇓̂ (𝑑,mark(�̂�𝑑 , 𝛼))mark(b̂, 𝛼) 𝑡2

Box
(𝑑, �̂�𝑑 ) = Â(�̂�, 𝜌, 𝑎𝑒) 𝛼 = �

alloc(exp(𝑎𝑒), 𝑡)
�̂� 𝜌 box𝑎𝑒 𝑡 ⇓̂ ({box(𝛼)},mark(⊥[𝛼 ↦→ (𝑑, �̂�𝑑 )], 𝛼)) ⟨⟩ 𝑡

Unbox
(𝑑, �̂�𝑑 ) = Â(�̂�, 𝜌, 𝑎𝑒) box(𝛼) ∈ 𝑑

�̂� 𝜌 unbox𝑎𝑒 𝑡 ⇓̂ ĝcout (�̂�𝑑 (𝛼), �̂�𝑑 ) ⟨⟩ 𝑡

Set-Box!
(𝑑0, �̂�𝑑0) = Â(�̂�, 𝜌, 𝑎𝑒0) box(𝛼) ∈ 𝑑0 (𝑑, �̂�𝑑 ) = Â(�̂�, 𝜌, 𝑎𝑒1)

�̂� 𝜌 setbox!𝑎𝑒0 𝑎𝑒1 𝑡 ⇓̂ ({closure(_x.x,⊥)},⊥) [𝛼 ↦→ (𝑑, �̂�𝑑 )] 𝑡

Atomic-Exp

�̂� 𝜌 𝑎𝑒 𝑡 ⇓̂ Â (�̂�, 𝜌, 𝑎𝑒) ⟨⟩ 𝑡

Fig. 6. The abstract heap fragment semantics

7.3 Heap Fragment Join and Effect Log Replay

The right-biased join of a heap fragment �̂� and result heap fragment �̂�𝑑 , denoted �̂�
−→⊔ �̂�𝑑 combines

�̂� and �̂�𝑑 with a bias toward the entries in �̂�𝑑 . We define both heap fragment extension and effect
log replay in terms of a right-biased join as

�̂� [𝛼 ↦→ (𝑑, �̂�𝑑 )] = �̂�
−→⊔ �̂�𝑑

−→⊔ {(𝛼, (𝑑, 1𝐹 ))} b̂ (�̂�) = �̂�
−→⊔ b̂ b̂0◦̂b̂1 = mark

∗ (∅ −→⊔ b̂1
−→⊔ b̂0, b̂1)

where −→⊔ associates to the left. Notice in particular that, when the heap is extended, the newly-
allocated variable 𝛼 inhabits a singleton heap fragment with a fresh abstract count. As we’ll see,
this ensures that the extension operation properly accounts for any previous bindings of 𝛼 .
The −→⊔ operator is defined fundamentally in terms of heap fragment entries and then lifted to

heap fragments themselves.

(⊥, 0) −→⊔ (⊥, 0) = (⊥, 0)

(⊥, 0) −→⊔ (𝑑, 1𝐹 ) = (𝑑, 1)

(⊥, 0) −→⊔ (𝑑,∞) = (𝑑,∞)

(𝑑0, 1) −→⊔ (⊥, 0) = (𝑑0, 1)

(𝑑0, 1) −→⊔ (𝑑1, 1) = (𝑑1, 1)

(𝑑0, 1) −→⊔ (𝑑1, 1𝐹 ) = (𝑑0 ⊔ 𝑑1,∞)

(𝑑0, 1) −→⊔ (𝑑1,∞) = (𝑑0 ⊔ 𝑑1,∞)

(𝑑0,∞) −→⊔ (𝑑1, �̂�) = (𝑑0 ⊔ 𝑑1,∞)

When the abstract count on the left is 0 (left column), the result is the right except that a fresh
count of 1 becomes simply a count of 1. This case applies when an evaluation allocates and returns
a new binding that is not present in the initial heap. There is no case for an abstract count of 1 on
the right because the semantics are designed such that a count of 1 on the right implies a count of
1 on the left.
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When the abstract count on the left is 1 (middle column), we have a case for each possible
abstract count on the right. A count of 0 means that a value isn’t present and the value on the left
is preserved. A count of 1 means that the entries refer to the same single address. In the case of a
heap join, 𝑑0 and 𝑑1 are the same value, and 𝑑0 ⊔ 𝑑1 = 𝑑1. In the case of an effect log replay, the
right entry may represent either a join or a strong update. In either case, we take the right value.
This behavior when the count on the left and right are both 1 is the key reason we can use the
same operation for heap join and log replay. A count of 1𝐹 means that a fresh concrete address was
allocated during evaluation when the initial heap already had a entry for it. Once joined, the heap
has multiple entries and count ∞.

When the abstract count on the left is ∞ (right column), the value on the right is joined and the
count remains ∞.

A right-biased join on heap fragments is simply a join on entries:

�̂�
−→⊔ �̂�𝑑 = _𝛼.�̂� (𝛼) −→⊔ �̂�𝑑 (𝛼)

7.4 Freshness Marking
The mark function ensures that a particular entry in a result heap is marked as fresh. It is defined
as

mark(�̂�𝑑 , 𝛼) = _𝛼 ′.

{
(𝑑, 1𝐹 ) if �̂�𝑑 (𝛼) = (𝑑, 1) and 𝛼 = 𝛼 ′

�̂�𝑑 (𝛼 ′) otherwise
such that the target address is marked fresh if it has count 1 in the given heap fragment, and is
untouched otherwise.

The mark
∗ function ensures that any entries with count 1 in the result heap fragment but were

fresh in the intermediate heap fragment are marked fresh.

mark
∗ (�̂�𝑑 , �̂�𝑑0 ) = _𝛼.

{
(𝑑, 1𝐹 ) if �̂�𝑑 (𝛼) = (𝑑, 1) and �̂�𝑑0 (𝛼) = (𝑑, 1𝐹 )
�̂�𝑑 (𝛼) otherwise

This freshening is necessary to propagate the freshness across an intermediate heap. Consider the
sequence of events: An initial heap has no entry for 𝛼 . The evaluation of the let-bound expression
results in a heap fragment in which 𝛼 has count 1𝐹 . (The semantics ensures that such an address
cannot return with count 1 since the initial heap has no entry for it.) When the initial heap is
extended with an entry for 𝛼 , its count is 1. Now suppose that the evaluation of the body results in
a heap fragment in which 𝛼 has count 1. Such a count indicates that it is the same binding as the
heap initial to the body evaluation. However, that binding is known to be fresh with respect to the
evaluation of let expression as a whole. Thus, we freshen it to maintain the invariant that fresh
addresses are so flagged.

7.5 Effect Log Garbage Collection
Because abstract effect logs are collapsed into a heap, effect log garbage collection, performed by
ĝcb , is defined

ĝcb (b̂, �̂�) = b̂ |R̂box (�̂�) where R̂box (�̂�) =
⋃

𝑑∈rng(�̂�)

{𝛼 ′ : box(𝛼) ∈ 𝑑, 𝛼 {�̂� 𝛼 ′}

so that a garbage-collected effect log maintains all entries reachable from box addresses of a
reference heap fragment. (Here, reachability between addresses is transparently lifted to cope with
sets of values.)
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Refl

𝜍 ⇑ 𝜍

Let-Body
gcin (𝜎, 𝜌, 𝑐𝑒) 𝑡0 ⇓ (𝑑, 𝜎𝑑 ) b 𝑡1

𝛼 = alloc(var(𝑥), 𝑡1) gcin (b (𝜎) [𝛼 ↦→ (𝑑, 𝜎𝑑 )], 𝜌 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇑ 𝜍

𝜎 𝜌 let𝑥 = 𝑐𝑒 in 𝑒 𝑡0 ⇑ 𝜍

Let-App
(closure(_𝑥 .𝑒, 𝜌0), 𝜎𝑑0) = A(𝜎, 𝜌, 𝑎𝑒0) (𝑑1, 𝜎𝑑1) = A(𝜎, 𝜌, 𝑎𝑒1) 𝑡1 = tick((𝑎𝑒0 𝑎𝑒1), 𝑡0)

𝛼 = alloc(var(𝑥), 𝑡1) gcin (𝜎𝑑0 [𝛼 ↦→ (𝑑1, 𝜎𝑑1)], 𝜌0 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇑ 𝜍

𝜎 𝜌 let𝑥 = (𝑎𝑒0 𝑎𝑒1) in 𝑒 𝑡0 ⇑ 𝜍

Fig. 7. The concrete heap fragment reachability semantics

Refl

𝜍 ⇑̂ 𝜍

Let-Body
ĝcin (�̂�, 𝜌, 𝑐𝑒) 𝑡0 ⇓̂ (𝑑, �̂�𝑑 ) b̂ 𝑡1

𝛼 = alloc(var(𝑥), 𝑡1) ĝcin (b̂ (�̂�) [𝛼 ↦→ (𝑑, �̂�𝑑 )], 𝜌 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇑̂ 𝜍
�̂� 𝜌 let𝑥 = 𝑐𝑒 in 𝑒 𝑡0 ⇑̂ 𝜍

Let-App
(𝑑0, �̂�𝑑0) = Â(�̂�, 𝜌, 𝑎𝑒0)

closure(_𝑥 .𝑒, 𝜌0) ∈ 𝑑0 (𝑑1, �̂�𝑑1) = Â(�̂�, 𝜌, 𝑎𝑒1) 𝑡1 = tick((𝑎𝑒0 𝑎𝑒1), 𝑡0)
𝛼 = alloc(var(𝑥), 𝑡1) ĝcin (�̂�𝑑0 [𝛼 ↦→ (𝑑1, �̂�𝑑1)], 𝜌0 [𝑥 ↦→ 𝛼], 𝑒) 𝑡1 ⇑̂ 𝜍

�̂� 𝜌 let𝑥 = (𝑎𝑒0 𝑎𝑒1) in 𝑒 𝑡0 ⇑̂ 𝜍

Fig. 8. The abstract heap fragment reachability semantics

8 COMPUTING THE ANALYSIS
Each semantics we have presented, including the abstract semantics, has been in terms of a big-step
relation. This representation is somewhat at odds with an abstract interpretation because it accounts
for intermediate computations only for overall convergent computations. For example, a big-step
evaluation relation says nothing about the evaluation of Ω because it diverges, but we would expect
an abstract interpretation of this program to report on reachable states at least.

Darais [2017] provides a generic framework to overcome these limitations and achieve an abstract
interpretation of a big-step semantics.

The first step is to augment the big-step evaluation relation with a big-step reachability relation
which specifies reachable configurations. Figure 7 presents the concrete heap fragment reachability
relation. For our ANF language, there are only a few rules. The Refl rule says that a configuration
reaches itself. The Let-App rule says that a configuration that reaches a let binding an application
reaches the call’s body. The Let-Body rule says that a configuration that reaches a let for which
evaluation of the bound expression converges reaches its body. We define the same kind of relation
for our abstract semantics, seen in Figure 8.
The reachability semantics can be brought into correspondence with a reference small-step

semantics to ensure that it does indeed recover intermediate configurations. (See Darais [2017] for a
detailed walkthrough of such a development.) We elide this development but do desire the property
that the abstract reachability semantics reaches a corresponding intermediate configuration to each
one reached by the concrete reachability semantics.
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Theorem 8.1 (Abstract Reachability Semantics Soundness). If 𝜍 ⇑ 𝜍 ′ and |𝜍 |config ⊑ 𝜍 then
𝜍 ⇑̂ 𝜍 ′ where |𝜍 ′ |config ⊑ 𝜍 ′.

This result follows easily from the soundness of our abstract evaluation semantics with respect
to the concrete evaluation semantics, established in § 9.
An analysis of a program pr is a pair ($, 𝑅) : [�Config → P(�Result)] × P(�Config) such that 𝑅

contains the configurations reachable from the initial configuration 𝜍pr and $ is a cache mapping
reachable configurations to their results. We say that ($, 𝑅) |= pr if and only if 𝜍pr ⇑̂ 𝜍 =⇒ 𝜍 ∈ 𝑅

and 𝜍pr ⇑̂ 𝜍 ∧ 𝜍 ⇓̂ 𝑟 =⇒ 𝑟 ∈ $(𝜍).
The best analysis ($+, 𝑅+) is defined as the least fixed point of the functional

F = _($, 𝑅).
⊔̂
𝜍 ∈𝑅

({𝜍 ↦→ 𝑟 : 𝜍 ⇓̂($,𝑅)
𝑟 }, {𝜍 ′ : 𝜍 ⇑̂($,𝑅)

𝜍 ′})

where the initial configuration 𝜍pr is assumed reachable. In other words, ($+, 𝑅+) is defined
($+, 𝑅+) = lfp(_($, 𝑅).F ($, 𝑅) ⊔ (⊥, {𝜍pr }))

In the definition of F , the relations ⇓̂($,𝑅)
and ⇑̂($,𝑅)

are the relations ⇓̂ and ⇑̂ except that recursive
references in the definition appeal directly to ($, 𝑅). Using these relations pulls all recursion outside
of F , bringing it into the view of the analysis’s fixed point search.

To connect the functional F with the evaluation and reachability semantics, Darais [2017] proves
the following theorem:

Theorem 8.2 (AlgorithmCorrectness [Darais 2017]). The analysis ($+, 𝑅+) is valid for program
pr , i.e., ($+, 𝑅+) |= pr .

The space of analyses is finite and F is monotonic, so the least fixed point can be computed by
Kleene iteration. A convenient means to express and compute this analysis is an abstract definitional
interpreter [Darais et al. 2017; Wei et al. 2018] and our implementation, discussed further in § 11,
takes this form.

9 SOUNDNESS OF THE ANALYSIS
The abstract semantics is sound if its judgements are in accord with the concrete semantics. For
instance, if an abstract summary indicates that a closure in the result is precisely the same as one
in the configuration (by an abstract count of 1 for all of its captured bindings) and the abstract
semantics is sound, then it must be the case that a closure in a corresponding concrete result is
precisely the same as one in the corresponding configuruation.

The entire development of this section is to arrive at the following general soundness theorem.

Theorem 9.1. If |𝜍 | ⊑ 𝜍 then 𝜍 ⇓ 𝑟 only if there exists 𝑟 such that |𝑟 |𝜍 ⊑ 𝑟 and 𝜍 ⇓̂ 𝑟 .
We proceed by defining the abstractions and relationships and then turn to proving it.

9.1 Abstraction
Each element of the concrete state space has a corresponding element in the abstract state space,
accessed by amember of the family of abstraction operators | · |𝑋 , defined in Figure 9. A configuration
abstracts component-wise. A heap fragment abstracts to a pair-valued map keyed by an abstract
address: the first component is the abstracted and joined collection of values located by each
concrete address that abstracts to it; the second component is the abstract cardinality of the number
of addresses, given by card:

card(∅) = 0 card({𝛼}) = 1 card({𝛼1, 𝛼2, . . . , 𝛼𝑛}) = ∞ for 𝑛 > 1
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| (𝜎, 𝜌, 𝑒, 𝑡) |config = ( |𝜎 |fragment, |𝜌 |env, 𝑒, |𝑡 |time)

| (𝑑, 𝜎𝑑 , b, 𝑡) | (𝜎,𝜌,𝑒,𝑡 )result = ( |𝑑 |D, |𝜎𝑑 |𝜎fragmentr , |b |
𝜎
log, |𝑡 |time)

|box(𝛼) |D = {box( |𝛼 |addr )} |(var(𝑥), 𝑡) |addr = (var(𝑥), |𝑡 |time)
|closure(_𝑥.𝑒, 𝜌) |D = {closure(_𝑥.𝑒, |𝜌 |env)} |(exp(𝑒), 𝑡) |addr = (exp(𝑒), |𝑡 |time)

|𝜌 |env = _𝑥.|𝜌 (𝑥) |addr |𝑡 |𝑘time = ⌊𝑡⌋𝑘

|𝜎 |fragment = _𝛼.(
⊔

𝛼= |𝛼 |addr

|𝜎 (𝛼) |D, card({𝛼 : 𝛼 ∈ dom(𝜎), 𝛼 = |𝛼 |addr }))

|𝜎𝑑 |𝜎fragmentr = _𝛼.(
⊔

𝛼= |𝛼 |addr

|𝜎𝑑 (𝛼) |D, card𝐹 ({𝛼 : 𝛼 ∈ dom(𝜎𝑑 ), 𝛼 = |𝛼 |addr }, 𝜎))

|b |𝜎log = |fold(b) |𝜎fragmentr

Fig. 9. The family of abstraction operators

That is, the abstract cardinality of empty and singleton sets is their concrete cardinality; the abstract
cardinality of any other set is∞. A box abstracts to a singleton box with an abstracted address. A
closure abstracts to a singleton closure with an abstracted environment. An environment abstracts
point-wise. An address abstracts to a pair of its first component and its abstracted time. A time
abstracts to its length-𝑘 prefix, where 𝑘 is a parameter of the analysis governing polyvariance. A
result abstracts component-wise though the abstractions of its heap fragment and log each depend
on a given reference heap fragment. The result heap fragment abstracts just as a configuration
heap fragment, but uses card𝐹 to report freshness with respect to a reference heap fragment:

card
𝐹 (∅, 𝜎) = 0

card
𝐹 ({𝛼}, 𝜎) = 1 if 𝛼 ∈ dom(𝜎)

card
𝐹 ({𝛼}, 𝜎) = 1𝐹 if 𝛼 ∉ dom(𝜎)

card
𝐹 ({𝛼1, 𝛼2, . . . , 𝛼𝑛}, 𝜎) = ∞ for 𝑛 > 1

The log abstracts first by collapsing it using fold into a heap fragment and abstracting it with
respect to a reference heap fragment.

fold(⟨⟩) = ∅ fold((𝛼,𝑑, 𝜎𝑑 ) :: b) = (fold(b) ∪ 𝜎𝑑 )
−→∪ {(𝛼,𝑑)}

where −→∪ is a concrete counterpart to −→⊔ defined

𝜎0
−→∪ 𝜎1 = 𝜎0 |dom(𝜎0)\dom(𝜎1) ∪ 𝜎1

which combines heap fragments 𝜎0 and 𝜎1 ensuring that the entries of 𝜎1 take precedence in the
result.

9.2 Refinement
Just as abstraction is defined by a family of operators, refinement is defined by a family of relations,
seen in Figure 10. We explicitly name each member in ambiguous circumstances, but otherwise
leave it implicit.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 96. Publication date: August 2021.



96:20 Kimball Germane and Jay McCarthy

(�̂�0, 𝜌, 𝑒, 𝑡) ⊑config (�̂�1, 𝜌, 𝑒, 𝑡) ⇐⇒ �̂�0 ⊑fragment �̂�1

�̂�0 ⊑fragment �̂�1 ⇐⇒ ∀𝛼.�̂�0 (𝛼) ⊑ �̂�1 (𝛼)
𝑑0 ⊑D 𝑑1 ⇐⇒ 𝑑0 ⊆ 𝑑1

(𝑑0, �̂�𝑑0 , b̂0, 𝑡) ⊑result (𝑑1, �̂�𝑑1 , b̂1, 𝑡) ⇐⇒ 𝑑0 ⊑D 𝑑1 ∧ �̂�𝑑0 ⊑fragmentr �̂�𝑑1 ∧ b̂0 ⊑log b̂1

�̂�𝑑0 ⊑fragmentr �̂�𝑑1 ⇐⇒ ∀𝛼.�̂�𝑑0 (𝛼) ⊑ �̂�𝑑1 (𝛼)
b̂0 ⊑log b̂1 ⇐⇒ ∀𝛼.b̂0 (𝛼) ⊑ b̂1 (𝛼)

0 ⊑N 1 ⊑N 1𝐹 ⊑N ∞

Fig. 10. The family of refinement relations

9.3 Simulation
The key relationship between the concrete and abstract heap fragment semantics is simulation:
if the concrete heap fragment semantics takes a (big) step, the abstract semantics should take a
corresponding step. We formally capture this relationship as the following theorem.

Theorem 9.2. If |𝜍 | ⊑ 𝜍 then 𝜍 ⇓ 𝑟 only if there exists 𝑟 such that |𝑟 |𝜍 ⊑ 𝑟 and 𝜍 ⇓̂ 𝑟 .
As written, this theorem is standard except for the dependence of the abstraction of the result

on the configuration itself. The proof proceeds by induction over the derivation of 𝜍 ⇓ 𝑟 . We sketch
each case to reveal the required lemmas, most of which show that each operator on the concrete
state space has a relationship with its corresponding operator on the abstract state space across the
abstraction.

We begin with the base cases:
For the Atomic-Exp rule, we need that atomic evaluation commutes with abstraction.

Lemma 9.3. For all 𝜎 , 𝜌 , and 𝑎𝑒 , |A(𝜎, 𝜌, 𝑎𝑒) |D ⊑ Â(|𝜎 |frag, |𝜌 |env, 𝑎𝑒).
For the Box rule, we need that bath heap extension and allocation commute with abstraction.

Lemma 9.4. For all 𝜎 , 𝛼 , 𝑑 , and 𝜎𝑑 , |𝜎 [𝛼 ↦→ (𝑑, 𝜎𝑑 )] |frag ⊑ |𝜎 |frag [|𝛼 |addr ↦→ (|𝑑 |D, |𝜎𝑑 |𝜎fragr )].

Lemma 9.5. For all 𝑎𝑒 and 𝑡 , |alloc(exp(𝑎𝑒), 𝑡) |addr ⊑ �
alloc(exp(𝑎𝑒), |𝑡 |time).

For the Set-Box! rule, we need that an effect log with a single entry commutes with abstraction.

Lemma 9.6. For all 𝜎 , 𝛼 , 𝑑 , and 𝜎𝑑 , | [(𝛼,𝑑, 𝜎𝑑 )] |𝜎log ⊑ [(|𝛼 |addr , |𝑑 |D, |𝜎𝑑 |𝜎fragr )].

For the Unbox rule, we need that garbage collection of a result commutes with abstraction. Of
course, we will also need that garbage collection of a configuration commutes with abstraction too.

Lemma 9.7. For all 𝜎 , 𝜌 , and 𝑒 , |gcin (𝜎, 𝜌, 𝑒) | ⊑ ĝcin ( |𝜎 |frag, |𝜌 |env, 𝑒).
Lemma 9.8. For all 𝑑 and 𝜎 , |gcout (𝑑, 𝜎) | ⊑ ĝcout ( |𝑑 |D, |𝜎 |frag).
Now onto the inductive cases:
For the App rule, we require that the advancement of time commutes with abstraction.

Lemma 9.9. For all (𝑎𝑒0 𝑎𝑒1) and 𝑡 , |tick((𝑎𝑒0 𝑎𝑒1), 𝑡) |time ⊑ t̂ick((𝑎𝑒0 𝑎𝑒1), |𝑡 |time).
An effect log b is consistent with a heap fragment 𝜎 if replaying b on 𝜎 yields a function. The

semantics ensure that produced logs are consistent with their corresponding heap fragments.
For the Let rule, we need commutation results about effect log composition and that mark and

mark
∗ introduce refinement.
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Lemma 9.10. For all 𝜎 and b0 that are consistent and b1 consistent with b0 (𝜎), |b1 ◦ b0 |𝜎log ⊑
|b1 |b0 (𝜎)log ◦̂|b0 |𝜎log .

10 BINDING INVARIANTS
A CFA applied to the program to the right will conclude that only closures over (_ () y) flow to f

(let ([z 42])
(let ([f (let ([y z])

(_ () y))])
(f)))

yet (_ () y) remains ineligible for inlining because its free
variable y is not in scope at (f). However, its binding is equiv-
alent to z’s and z is in scope at (f). Thus, one could rema-
terialize (_ () z) to replace f and preserve the program’s
behavior.

This optimization is an instance of higher-order rematerialization introduced by Might [2010]. To
support this optimization, Might generalized the task of environment analysis from determining
whether the same variable in different environments has the same binding to determining whether
two bindings are equivalent, whether or not they are associated with the same variable. An analysis
which can complete this more general task can justify this and similarly-powerful optimizations.

We can bring HFAC up to the task of the generalized environment analysis with a minor
modification. The following modified rules for let expressions and application take precedence
when the argument is a reference to some variable 𝑦.

Let-Invariant
(𝑑0, �̂�𝑑0) = Â(�̂�, 𝜌,𝑦)

|�̂� (𝜌 (𝑦)) | = 1 ĝcin (b̂0 (�̂�0) [𝜌 (𝑦) ↦→ (𝑑0, �̂�𝑑0)], 𝜌 [𝑥 ↦→ 𝜌 (𝑦)], 𝑒) 𝑡1 ⇓̂ (𝑑, �̂�𝑑 ) b̂1 𝑡2
�̂�0 𝜌 let𝑥 = 𝑦 in 𝑒 𝑡0 ⇓̂ (𝑑,mark

∗ (�̂�𝑑 , �̂�𝑑0)) ĝcb (mark
∗ (b̂1, �̂�𝑑0), �̂�0)◦̂b̂0 𝑡2

App-Invariant
(𝑑0, �̂�𝑑0) = Â(�̂�, 𝜌, 𝑎𝑒0) closure(_𝑥 .𝑒, 𝜌0) ∈ 𝑑0 |�̂� (𝜌 (𝑦)) | = 1 (𝑑1, �̂�𝑑1) = Â(�̂�, 𝜌,𝑦)

𝑡1 = t̂ick((𝑎𝑒0 𝑦), 𝑡0) ĝcin (�̂�𝑑0 [𝜌 (𝑦) ↦→ (𝑑1, �̂�𝑑1)], 𝜌0 [𝑥 ↦→ 𝜌 (𝑦)], 𝑒) 𝑡1 ⇓̂ (𝑑, �̂�𝑑 ) b̂ 𝑡2
�̂� 𝜌 (𝑎𝑒0 𝑦) 𝑡0 ⇓̂ (𝑑, �̂�𝑑 ) b̂ 𝑡2

In either of these cases, if the binding of the variable 𝑦 has abstract count 1, then a fresh address
for 𝑥 is not allocated. Instead, the current address of 𝑦 is used. Notice that we must still evaluate
the argument and extend the heap with it, but we are guaranteed to maintain precision because Â
does not perform any allocation. When we want to know whether two different variables have the
same binding, we can simply ensure that their abstract addresses are the same and have count 1.

We evaluate some aspects of binding invariants in § 11.4.

11 HFAC IMPLEMENTATION AND EVALUATION
We implemented HFAC as an abstract definitional interpreter [Darais et al. 2017] to evaluate its
performance. We evaluate our implementation of HFAC against an AAM-based 𝑘-CFA with abstract
counting (AAM-AC) on two different benchmark suites:
(1) the original abstract counting benchmark suite [Might and Shivers 2006b], which includes

programs eligible for transducer fusion [Shivers and Might 2006]; and
(2) a set of R6RS Scheme programs designed to elicit a variety of analysis behaviors.

For each program, we ran each analysis in both context-insensitive (𝑘 = 0) and context-sensitive
(𝑘 = 1) modes and, for each analysis, we applied garbage collection at each transition to ensure
maximum precision. In addition to tabulating the size of the explored state space and the time taken
to do so, we also tabulate the number of inlinings an constant propagations justified by the analysis.

Proc. ACM Program. Lang., Vol. 5, No. ICFP, Article 96. Publication date: August 2021.



96:22 Kimball Germane and Jay McCarthy

A _ may be inlined at a site if only closures over it flow to that site, each of its free variables are
in scope at that site, and the bindings in the closure environment are identical to the bindings at
the site environment. Per Might and Shivers [2006b], we appealed to the environment bindings’
abstract counts to establish the third condition. Bindings for ANF-introduced variables had count 1,
as expected.

11.1 Extending the Language
Running HFAC on our benchmark suites requires that we extend it to support letrec, multiple
parameter functions, primitive operations, conditional branching, and call/cc.

11.1.1 letrec. To add support for letrec to HFAC, we need to ensure only that the reachability
computation respects letrec’s scope rules. For our benchmarks, we rewrite definition contexts, which
typically consist of function definitions and mutable variable declarations, to instances of letrec. In
some cases, however, such a translation leads to a use of letrecwith a “serious” expression providing
the bound value. We support these more general forms by implementing letrec operationally in
terms of let and set!, which is particularly well-behaved with the ability to perform strong update.

11.1.2 Multiple-Parameter Functions. Supporting functions which accept multiple parameters
introduces no technical issues but does require that we, e.g., propagate freshness with respect to
each parameter when the the result of a function is obtained.

11.1.3 Primitive Operations. To analyze the R6RS Scheme programs, we implemented several
dozen primitive operations. Impure operations, such as vector-set! and set-cdr!, can potentially
leverage abstract counts to perform strong update. In practice, the array or recursive structure is
folded into a single abstract address, preventing the conditions under which strong update applies.

11.1.4 Conditional Branching. If the analysis cannot narrow a guard value to \#true or \#false,
then it must analyze both branches. If the abstract count of the guard value is 1, however, it can
sharpen the guard value in each branch for the value necessary to have taken it. This capability is
of limited utility in this setting, since guard values are rarely scrutinized multiple times, but this
policy can assist verification machinery integrated within the analysis [Might 2007c; Might et al.
2007].

11.1.5 call/cc. The continuation-based transducer programs require support for call/cc, which
we add using the technique of Vardoulakis and Shivers [2011]. Uses of call/cc interfere with the
abstract count summaries produced by HFAC. When calling a non-local continuation, there is
no necessary correspondence between the bindings in the result heap fragment and those in the
continuation’s. We reflect this disconnect in the abstract count by flagging each address as fresh
in the result heap fragment, which has the effect of distinguishing addresses in the result heap
fragment from those in the continuation’s heap fragment.

11.2 ΓCFA Benchmark
The original abstract counting evaluation [Might and Shivers 2006b] considers a small suite of
programs which exhibit recursive patterns as well as heavy use of 𝑐𝑎𝑙𝑙/𝑐𝑐 . Figure 11 tabulates the
number of states/configurations, analysis time, and inlinings justified by each analysis. For each
program and precision level, HFAC is able to justify more inlinings. For smaller programs, AAM-AC
and HFAC exhibit similar performance in terms of analysis time and, to a lesser degree, the size
of the explored state space. For the larger programs, which include uses of call/cc, performance
diverges: HFAC takes significantly less time and encounters fewer distinct states/configurations.
Because of the somewhat stark difference, we manually verified the coverage of each analysis.
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0CFA 1CFA
AAM-AC HFAC AAM-AC HFAC

Program States Time Inlines Configs Time Inlines States Time Inlines Configs Time Inlines
fact-tail 14 𝜖 2 15 𝜖 3 20 𝜖 2 15 𝜖 3
fact-y-combinator 30 𝜖 4 32 𝜖 5 49 1ms 4 43 2ms 5
nested-loops 23 𝜖 4 55 1ms 8 57 1ms 4 61 3ms 8
put-double-coroutines 417 34ms 44 148 3ms 64 862 172ms 44 149 6ms 65
integrate-fringe-coroutines 925 146ms 60 180 5ms 77 2281 1500ms 63 191 9ms 81
integrate-stream-coroutines 1070 184ms 55 295 12ms 61 2039 921ms 56 209 11ms 76

Fig. 11. Comparison between an AAM-AC and HFAC for both 𝑘 = 0 and 𝑘 = 1 call-site sensitivities on the

original abstract counting benchmark suite. The table presents the number of states/configurations of each

analysis, the median analysis time of three runs, and the number of inlines and constant propagations the

flow analysis and abstract counting together justify.

We observe that the analysis size of HFAC stays essentially the same when moving from 𝑘 = 0 to
𝑘 = 1. Much of this is due to the use of flat domains for atomic values, a choice made to replicate the
original AAM-AC benchmark. When 𝑘 = 0, earlier heaps (and heap fragments) contain constants
and later heaps contain ⊤𝑋 for a particular domain 𝑋 . Thus, this abstraction offers a small degree
of polyvariance by itself. When 𝑘 = 1, the call-site sensitivity becomes saturated roughly as the
constants become ⊤𝑋 , offering little more discriminating power. This behavior completely explains
the results of fact-tail which has the same number of abstract states for each 𝑘 .
We don’t see the same increase for HFAC as for AAM-AC on the transducer programs because

of their intricate use of continuations. Because AAM-AC heap-allocates continuations, distinct
uses of call/cc are susceptible to a combinatorial explosion as evaluation paths are explored
for each combination of allocations and abstract counts. (The AAM-AC implementation used
subsumption testing rather than naive equality testing for states, which reduced the number of
states significantly.) In contrast, HFAC specifically does not allocate first-class continuations in its
heap which diminishes its state space significantly and increases its precision.

11.3 R6RS Benchmark
Our second benchmark suite includes a variety of R6RS Scheme programs crafted to exercise
CFAs in particular ways, such as to test its polyvariance capabilities (e.g. eta, blur, kcfa-2,
kcfa-3), its ability to cull stale abstract resources via garbage collection (e.g. facehugger), its
performance under pathological constructions (e.g. sat-1, sat-2, sat-3), and its performance on
larger and more-representative programs (e.g. regex, earley). Figure 12 tabulates the number of
states/configurations, analysis time, and inlinings justified by each analysis.
We observe that HFAC is more precise than AAM-AC on these programs, when both analyses

succeed. On boyer, a logic programming benchmark, only HFAC at 𝑘 = 0 succeeds, with each
other analysis timing out. On regex, a derivative-based regular expression matcher, AAM-AC times
out at 𝑘 = 1 simply due to the large state space; HFAC itself produces a relatively large model
for regex at 𝑘 = 1. On cpstak, a CPS version of the Tak function, HFAC times out at 𝑘 = 1. This
timeout occurs in part because HFAC treats the continuation encoded as a first-class function
as data. This encoding prevents both the control-flow aspect of the analysis from managing it
and the heap fragment aspect of the analysis from separating any bindings. AAM-AC succeeds
at 𝑘 = 1 because the AAM-AC implementation uses subsumption testing for states whereas the
HFAC implementation uses naive equality. (This difference explains why the explored state space
of AAM-AC is smaller than for HFAC on tak as well.)
With the exception of tak and cpstak, HFAC takes the same or less time than AAM-AC to

produce its model for the same 𝑘 . In some cases, the difference is substantial. sat-2, a brute-force
SAT solver, is an extreme example on which AAM-AC takes 8 seconds to explore over 13,000 states
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0CFA 1CFA
AAM-AC HFAC AAM-AC HFAC

Program States Time Inlines Configs Time Inlines States Time Inlines Configs Time Inlines
eta 13 𝜖 6 12 𝜖 8 13 𝜖 6 12 𝜖 8
blur 36 𝜖 12 28 𝜖 17 55 1ms 12 32 1ms 17
facehugger 32 𝜖 9 43 𝜖 11 75 1ms 9 43 𝜖 11
kcfa-2 21 𝜖 5 19 𝜖 8 21 𝜖 5 19 𝜖 8
kcfa-3 45 𝜖 7 39 𝜖 11 45 1ms 7 39 1ms 11
church 7823 8s 24 237 11ms 24 1478 295ms 25 72 3ms 26
mj09 23 𝜖 6 21 𝜖 13 27 𝜖 6 21 𝜖 13
ack 39 𝜖 4 43 𝜖 6 571 40ms 4 58 1ms 6
tak 43 1ms 5 1281 149ms 7 1487 481ms 5 2222 345ms 7
cpstak 53 1ms 6 201 12ms 11 1688 561ms 6 – – –
map 101 1ms 14 40 𝜖 16 110 3ms 14 67 2ms 16
flatten 34 𝜖 3 15 𝜖 5 919 135ms 3 53 1ms 5
loop2-1 23 𝜖 4 55 1ms 8 57 1ms 4 61 3ms 8
loop2-2 31 𝜖 4 71 3ms 8 75 3ms 4 77 7ms 8
state 14 𝜖 3 13 𝜖 5 20 𝜖 3 13 𝜖 5
sat-1 142 5ms 7 55 𝜖 29 857 61ms 7 78 2ms 29
sat-2 452 27ms 10 43 1ms 23 13,530 8s 10 43 2ms 23
sat-3 249 14ms 11 42 𝜖 26 12,384 6s 11 42 2ms 26
regex 7375 3s 53 553 26ms 111 – – – 2491 420ms 111
boyer – – – 1166 2s 103 – – – – – –
deriv 106 3ms 5 57 1ms 12 536 60ms 5 158 11ms 12
earley 354 38ms 41 253 20ms 58 1963 1s 41 644 141ms 58
mbrotZ 236 13ms 16 120 3ms 30 1020 289ms 16 175 17ms 30

Fig. 12. Comparison between an AAM-AC and HFAC for both 𝑘 = 0 and 𝑘 = 1 call-site sensitivities on

a variety of R6RS programs. The table presents the number of states/configurations of each analysis, the

median analysis time of three runs, and the number of inlines and constant propagations the flow analysis

and abstract counting together justify. A dash indicates a failure to complete the analysis after 10 minutes.

at 𝑘 = 1 whereas HFAC takes 2 milliseconds to encounter 43 configurations. For this particular
example, the difference arises from the exponential number of candidate solutions the program
tests, each of which is reachable from the stack.

11.4 Binding Invariants
In this section, we report on an initial evaluation of binding invariants. As with inlining, we separate
the question of whether a binding invariant is usable from the question of whether it is useful. The
criteria given in § 10 answer the former question. The answer to the latter depends on the policy
which determines whether to use the detected invariant or create a fresh binding.

For first question, we report on the number of usable binding invariants encountered in each
analysis. For the second, we report on the performance of a naive policy which always uses the
detected invariant; however, this report is intended only to give an impression of the effectiveness
of the naive policy and not of binding invariants in general. To assess the general effectiveness of
binding invariants requires a comparison between different principled policies or a formulation
of binding invariants which allows the choice to be made by the user at the point the binding
information is needed.

Figure 13 tabulates the number of configurations, analysis time, and inlinings justified by HFAC
without binding invariants against HFAC with binding invariants (abbreviated HFBI), using the
aforementioned naive policy. In addition, it tabulates the number of times each analysis detected
a binding invariant. In a few cases, the analysis detected no binding invariants while, in several
of the more general programs, it detected hundreds and, in case, thousands. The high number of
detected binding invariants underscores the need for an effective policy to determine whether the
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0CFA 1CFA
HFAC HFBI HFAC HFBI

Program States Time Inlines Configs Time Detected Inlines States Time Inlines Configs Time Detected Inlines
eta 12 𝜖 8 12 𝜖 0 8 12 𝜖 8 12 𝜖 0 8
blur 28 𝜖 17 32 𝜖 8 14 32 1ms 17 34 1ms 8 14
facehugger 43 𝜖 11 43 𝜖 3 7 43 𝜖 11 43 𝜖 3 7
kcfa-2 19 𝜖 8 19 𝜖 8 8 19 𝜖 8 19 𝜖 8 8
kcfa-3 39 𝜖 11 39 𝜖 24 11 39 1ms 11 39 1ms 24 11
church 237 11ms 24 172 4ms 109 19 72 3ms 26 75 2ms 24 20
mj09 21 𝜖 13 21 𝜖 2 13 21 𝜖 13 21 𝜖 2 13
ack 43 𝜖 6 43 𝜖 2 6 58 1ms 6 62 1ms 3 6
tak 1281 149ms 7 – – – – 2222 345ms 7 5145 848ms 2944 7
cpstak 201 12ms 11 – – – – – – – – – – –
map 40 𝜖 16 62 1ms 6 16 67 2ms 16 67 2ms 6 16
flatten 15 𝜖 5 15 𝜖 0 5 53 1ms 5 53 1ms 0 5
loop2-1 55 1ms 8 55 1ms 11 8 61 3ms 8 55 3ms 11 8
loop2-2 71 3ms 8 106 4ms 21 8 77 7ms 8 106 10ms 21 8
state 13 𝜖 5 13 𝜖 2 5 13 𝜖 5 13 𝜖 2 5
sat-1 55 𝜖 29 55 𝜖 9 29 78 2ms 29 78 2ms 9 29
sat-2 43 1ms 23 43 1ms 8 21 43 2ms 23 43 2ms 8 21
sat-3 42 𝜖 26 42 𝜖 8 26 42 2ms 26 42 2ms 8 26
regex 553 26ms 111 1098 48ms 301 111 2491 420ms 111 2383 217ms 547 111
boyer 1166 2s 103 1586 2s 157 103 – – – – – – –
deriv 57 1ms 12 57 1ms 0 12 158 11ms 12 158 11ms 0 12
earley 253 20ms 58 621 35ms 217 56 644 141ms 58 765 155ms 231 56
mbrotZ 120 3ms 30 120 3ms 8 24 175 17ms 30 175 20ms 14 24

Fig. 13. Comparison between HFAC with and without binding invariants (HFBI) for both 𝑘 = 0 and 𝑘 = 1

call-site sensitivities on a variety of R6RS programs. The table presents the number of configurations of

each analysis, the median analysis time of three runs, and the number of inlines and constant propagations

the flow analysis and abstract counting together justify. For HFBI, it also presents the number of binding

invariants detected during analysis. A dash indicates a failure to complete the analysis after 10 minutes.

invariant should be used. The naive policy in each case decreases (or leaves unchanged) the number
of propagations (e.g. inlines) the analysis is able to justify, because the use of a binding invariant
changes the variables the environment questions consider—variables in general less likely to be in
scope.

Interestingly, the naive policy’s use of binding invariants had a non-negligible effect on the size
of the models produced by the analysis. map, loop2-2, and boyer see 50% increases in size, tak,
regex at 𝑘 = 0, and early see 100% or more, but church at 𝑘 = 0 and regex at 𝑘 = 1 see decreases
in size.

12 RELATEDWORK
This work builds directly on the heap fragment technique of Germane and Adams [2020]. In terms
of CFA, we slightly generalize their technique by permitting structural mutation and not just
variable mutation. We repurpose this technique for must-alias analysis and find it to be nearly
ideal: its independence from the stack allows it to maintain precision even in recursive settings and
yields a qualitatively more-precise analysis.

The heap fragment technique is analogous to the combination garbage collection/abstract count-
ing (GC/AC) technique [Might and Shivers 2006b] in that it increases speed and precision of the
control-flow analysis/must-alias analysis (CFA/MAA) to which it is applied. Our technique is not
an alternative to GC/AC to achieve the same kind of analysis improvement but rather one we can
apply to GC/AC, for example, to qualitatively improve their effectiveness. While it is straightfor-
ward to enhance a CFA/MAA formulated in an operational framework with GC/AC, enhancing
CFA/MAA with heap fragments requires the underlying CFA to be stack-precise and requires a
summarization-based account of the MAA.
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Like Might and Shivers [2006b], HFAC is similar to the higher-order must-alias analysis of
Jagannathan et al. [1998] in that it maintains a count of variable bindings and incorporates abstract
reachability and garbage collection. We share the differences too: HFAC is polyvariant, obtains full
precision after only one run, and is formulated operationally. HFAC is further distinguished by
providing a summary-based account of abstract counting. Finally, like Jagannathan et al. [1998], our
analysis separates the bindings reachable from a call from those reachable only from its continuation.
For this reason, both analyses can reason more capably about recursion than standard abstract
counting.

12.1 Environment Analysis
Several theories of environment analysis, which can be used to answer must-alias questions in
limited settings, have been developed since Might and Shivers’s abstract counting. We review
several representative ones.

Facchinetti et al. [2017] use the notion of relative store fragments to identify singleton abstractions
(i.e. abstractions with count 1) in the setting of a demand-driven analyzer. A relative store fragment
annotates each variable with a kind of delta frame string (à la ΔCFA [Might and Shivers 2006a])
relative to the current program point. HFAC is spiritually similar to this analysis where the former
extends a kind of localized heap with one instrument of must-alias analysis—abstract counts—and
the latter with another—delta frame strings. In fact, their use of delta frame strings likely looks
similar to the heap fragment technique instantiated for delta frame strings rather than abstract
counts. However, the demand-driven framework of relative store fragments is different enough
from our setting—an exhaustive, stack-precise CFA—that porting it over would likely not be trivial.
Unchanged variable analysis (UVA) [Bergstrom et al. 2014] transforms environment binding

questions into graph reachability questions. In particular, UVA determines that a variable’s binding
is unchanged at a destination site (e.g. a call site) from a given source site when no control flow
path from the source to the destination passes through a rebinding of that variable. This criterion
allows UVA to answer environment questions using only the CFA-produced control flow model.
However, Bergstrom et al. recognize that, because their technique cannot distinguish between
environments created on different control-flow paths, it is more limited than dedicated analyses
such as abstract counting or ΔCFA [Might and Shivers 2006a].

ΔCFA [Might and Shivers 2006a] is a theory of environment analysis based on stack change. A
ΔCFA analysis tracks the net stack change between each pair of points in a control flow graph
and determines which variable rebindings the stack change implies. Originally formulated for
finite-state control-flowmodels, ΔCFA, like ΓCFA, has only limited ability to reason about recursion.
Germane and Might [2017] apply ΔCFA’s environment theory to pushdown control-flow models to
increase this ability. Like UVA, their application does not required dedicated environment analysis
machinery within the implementation and instead analyzes the pushdown control-flow model to
answer environment questions. It is unknown to us how effective this theory would be applied to a
pushdown model obtain via heap fragments.

13 DISCUSSION AND CONCLUSION
By isolating the evaluation of an expression from its continuation, the use of heap fragments
provides a qualitative increase to reasoning power about bindings which mingle with recursion.
Given that recursion is pervasive in functional programs, we believe this increase makes the heap
fragment-based analysis worth its formal weight. However, isolating bindings with heap fragments
makes it difficult to determine global properties about bindings. For instance, it is not apparent
how to determine whether only one concrete binding ever exists at once for a particular abstract
binding, in which case the binding could be globalized [Sestoft 1989].
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