
m-CFA Exhibits Perfect Stack Precision

Kimball Germane1[0000−0003−4903−5645]

Brigham Young University, Provo UT 84601, USA kimball@cs.byu.edu

Abstract. m-CFA is a hierarchy of control-flow analyses (CFA) formu-
lated as abstract abstract machines and designed to exhibit polynomial
time complexity while remaining usefully precise. The Pushdown for Free
technique (P4F) prescribes a continuation allocator which induces per-
fect stack precision wherein each function invocation returns to only its
call. Unfortunately, it is difficult to apply P4F to m-CFA as P4F is de-
veloped in an ANF setting but m-CFA is formulated in a CPS setting.
In this paper, we recall that ANF corresponds to a CPS sublanguage
without non-local control and show that m-CFA behaves identically on
both. With an ANF-based m-CFA in hand, we turn to applying P4F
only to discover that it already follows the prescription. In other words,
m-CFA has always had perfect stack precision, a characteristic neither
intended nor recognized, at its development or since. In addition to be-
ing surprising, we discuss how this result allows a spectrum of non-local
control constructs to be supported more easily and with more precision
than previous techniques.

Keywords: Static analysis · Control-flow analysis · Abstract interpre-
tation

1 Introduction

A flow analysis of a functional program (i.e. control-flow analysis or CFA) com-
putes, for each call (f e), the set of (closures over) λs which flow to f (i.e. to
which f may evaluate) and, for each function λx.e, the set of enclosed λs which
flow to x (i.e. to which x may be bound) [14]. Perhaps the most prevalent flow
analysis is Shivers’s k-CFA [16], a hierarchy of analyses in which the CFA at
level k qualifies the analysis of each expression by the last-k call sites encoun-
tered during abstract evaluation. For instance, 0CFA does not qualify the anal-
ysis of expressions at all, and is thus context-insensitive; in contrast, 1CFA uses
the most-recent call site to distinguish the analysis of otherwise-identical evalua-
tion. To illustrate each, consider the program to the right, adapted from Gilray et
al. [6], which we will use as a running example. The function id is called once

(let* ([id (lambda (x) x)]
[y (id 10)]
[z (id 12)])

(+ y z))

at each of two sites with different arguments
and, as a consequence, the analysis will bind
x twice. A 0CFA analysis will conflate these
two bindings so that each reference to x pro-
duces the values of both arguments. A 1CFA
analysis, on the other hand, will qualify each binding by the most-recent call

2 K. Germane

site, (id 10) and (id 12) respectively, so that references to it access only the
values so qualified.

Since Shivers introduced k-CFA, techniques have been developed to improve
its precision [12], its power [12, 11, 21], and its engineerability [19]. In this paper,
we recall and reconcile two concurrent improvements, the development of m-CFA
and the development of stack-precise CFA.

m-CFA [13] emerged from a kind of paradox: when k-CFA is applied to a
functional language, its complexity is exponential (for k > 0); when k-CFA is
applied to an object-oriented (OO) language, however, its complexity is poly-
nomial. The discrepancy arises from the different ways in which environments
are created in each setting. In a functional program, environments are created
implicitly when a λ is encountered whereas, in an OO program, environments
are created as part of explicit constructor invocation using new. Might et al.
resolve this discrepancy to obtain a context-sensitive CFA hierarchy, m-CFA,
with polynomial time complexity.

Stack-precise CFA emerged from the desire for a better model of control
flow in functional languages. For two decades, CFAs modelled control flow as
a finite state machine (FSM), a directed graph of control states connected by
control transitions. While this model can be produced by relatively-simple work-
set algorithms, it cannot precisely capture the control behavior of higher-order
programs whose execution is facilitated by a stack. Without precisely modeling
the stack, it is impossible to capture the call–return behavior of programs with
full precision, and FSM-producing CFAs routinely lose track of which particular
caller to which a given call should return. The example program illustrates this
well: although a 1CFA produces the expected value for each dynamic reference
to x, a 1CFA without a precise stack model may associate both returns from id
to each caller. In this case, y and z are each bound to both dynamic values of
x, and the analysis calculates a result set {10 + 10, 10 + 12 = 12 + 10, 12 + 12}.

In the same year as m-CFA’s presentation, Vardoulakis and Shivers [20] pre-
sented CFA2, a “context-free approach to control-flow analysis”, which models
control flow using a pushdown system. Using a pushdown system, rather than
an FSM, allows CFA2 to precisely model the stack and perfectly associate each
return to its corresponding call. Unfortunately, CFA2’s summarization algorithm
is substantially more complex than an FSM-producing workset algorithm and
must be significantly modified to accommodate additional control features [22].
Moreover, its computational complexity is exponential, despite CFA2 not ex-
hibiting call-site sensitivity à la k-CFA. Follow-on work produced stack-precise
CFAs corresponding to FSM CFAs whose context-insensitive instances had poly-
nomial complexity [10, 7], but the techniques still imposed polynomial overhead
and, in some cases, employed similarly-intricate summarization algorithms.

Somewhat surprisingly, Gilray et al. [6] discovered a technique to transform
an FSM-based CFA into a stack-precise CFA “for free” in two senses: first, the
technique prescribes a particular continuation allocator but requires no modifi-
cation to the CFA, so it is free in terms of implementation effort; second, the
allocator imposes only a constant factor overhead to running time above the

m-CFA Exhibits Perfect Stack Precision 3

CFA’s, and so it is free in terms of computational complexity. Following the
authors, we refer to this as the pushdown for free technique, abbreviated P4F.

Naturally, we would like to apply P4F to m-CFA to get the best of both
worlds: a (1) polynomial-time, (2) stack-precise CFA hierarchy that (3) admits
a straightforward workset-based implementation. Applying P4F requires care,
however, because m-CFA is defined in terms of a CPS language but P4F is
demonstrated in an ANF setting [4], and a naïve port will not necessarily result
in the same analysis [15].

In this paper, we reformulate m-CFA so as to be able to directly apply P4F.
After reviewing m-CFA (§2), we identify a subset of its CPS language free from
non-local control (§3) and specialize a formulation of m-CFA to it (§4). We then
translate this subset language to ANF (§5), formulate m-CFA for it (§6), and
show that it is the same analysis as the CPS-based one (§7). Having arrived in
ANF, we review P4F (§8). We observe that ANF-based CFA already uses it and
show that it is indeed stack-precise (§9). We conclude by discussing ramifications
of the corollary that, within the subset language, m-CFA is and always has been
stack-precise (§10).

2 m-CFA

Might et al. [13] developed m-CFA in response to the paradox that, when for-
mulated in an object-oriented (OO) setting, k-CFA [16] exhibits polynomial
time complexity but, when formulated in a functional setting, exhibits expo-
nential time complexity. After ensuring that k-CFA is implemented faithfully in
both settings, Might et al. pinpoint environment construction to be the key dis-
tinction: in functional languages, environment bindings are captured implicitly
within closures when lambda expressions are evaluated; in contrast, programmers
explicitly pass data to constructors in OO languages when creating new objects.
This difference leads to an exponential number of possible environments in the
former case and a polynomial number in the latter, explaining the discrepancy.

Might et al. resolve this paradox by modifying k-CFA to produce only a
polynomial number of environments by flattening the environment structure. To
support this structure, their modified analysis explicitly copies bindings from old
environments to new at each step, mimicking the manual construction that pro-
grammers carry out in OO programs. However, they observe that this rebinding
policy leads to a precision decrease in typical programs, which is visible in the

(define (f x)
(log "f call")
(g x))

program to the right. In 1CFA, the bindings of x in f before
the call to log are distinguished by the f’s caller, it being
the most-recent call site. After the call to log, however, the
most-recent call site is this call to log, or its last inner call,
regardless of f’s caller. Consequently, rebinding x from the former environment
to the latter combines bindings from distinct callers, jettisoning precision. Rather
than revert the policy to avoid a precision decrease, Might et al. manage the
context abstraction differently. Instead of qualifying evaluation with the last-
k call sites, they devise an approach which qualifies it with the top-m stack

4 K. Germane

frames. The form of the context remains the same—a sequence of call sites—
but its construction and consequent effect on the analysis differs. The resulting
analysis, m-CFA, is characterized by both its rebinding policy and its context
abstraction.

m-CFA is defined over a CPS language, in which all control is effected through
function calls, in terms of a small-step abstract machine. We reproduce its for-
malism in Figure 1, remaining vague about the details of the CPS language until
§3. A machine state ς̃ is a tuple of a (CPS) call, environment, and store. A store

ς̃ ∈ Σ̃ = Call× Ênv × Ŝtore σ̂ ∈ Ŝtore = Âddr → D̂

d̂ ∈ D̂ = P(Ĉlo + {halt}) ĉlo ∈ Ĉlo = Lam× Ênv

â ∈ Âddr = Var × Ênv ρ̂ ∈ Ênv = ULab≤m

⇒Σ̃ ⊆ Σ̃ × Σ̃

(call , ρ̂, σ̂) ⇒Σ̃ (call ′, ρ̂′′, σ̂′) where call = J(f e1 . . . en)
ℓK and

(lam, ρ̂′) ∈ Ê(f, ρ̂, σ̂) d̂i = Ê(f, ρ̂, σ̂)
lam = J(λ (v1 . . . vn) call

′)K âxj = (xj , ρ̂
′′)

ρ̂′′ = n̂ew(ℓ, ρ̂, lam, ρ̂′) âvi = (vi, ρ̂
′′)

{x1, . . . , xm} = free(lam) d̂′j = σ̂(xj , ρ̂
′)

σ̂′ = σ̂ ⊔ [âvi 7→ d̂i] ⊔ [âxj 7→ d̂′j]

Fig. 1. m-CFA state transition relation

σ̂ maps addresses to denotable values. A denotable value d̂ is a set of closures,
each of which is a pair of a λ expression and an environment. An address â is
a pair of a variable and an environment. An environment ρ̂ is a sequence of call
site labels up to length m, which is a parameter to the analysis. These labels are
drawn from ULab which we define shortly.

Because of the uniformity of CPS, the machine state transition ⇒Σ̃ can be
characterized by a single rule: a machine step transitions control from a call to
the body of its operator, which is also a call. In CPS, each argument to a call is
trivial, and its value is provided by Ê : Exp× Ênv × Ŝtore → D̂.

Ê(x, ρ̂, σ̂) = σ̂(x, ρ̂) Ê(lam, ρ̂, σ̂) = {(lam, ρ̂)}

The n̂ew metafunction determines the destination environment as a function
of the current call and its environment and the operator λ and its environment.

n̂ew(ℓ, ρ̂, lam, ρ̂′) =

{
⌊ℓ :: ρ̂⌋m lam is a procedure
ρ̂′ lam is a continuation

If the call is the application of a procedure, the destination environment is de-
rived from the source environment by prepending the label of the call being

m-CFA Exhibits Perfect Stack Precision 5

performed and limiting the environment sequence to m calls overall. If the call
is the application of a continuation, its environment is used as the destination
environment. In the calculated environment m-CFA installs two distinct sets
of bindings: first, the values of each parameter; second, the values of each free
variable in the operator λ, resolved in the closure environment.

m-CFA’s system space Ξ̃ factors the store from machine states so that an
analysis consists of a single, global store and a set R̃ of store-less configurations.

ξ̃ ∈ Ξ̃ = R̃× Ŝtore r̃ ∈ R̃ = P(C̃) c̃ ∈ C̃ = Call× Ênv

An analysis is the least fixed point of the total monotonic function ⇒Ξ̃ : Ξ̃ → Ξ̃.

(C̃, σ̂) ⇒Ξ̃ (C̃0 ∪ C̃ ∪ C̃ ′, σ̂0 ⊔ σ̂′)

where C̃0 = {(call , ⟨⟩)} and σ̂0 = [(k, ⟨⟩) 7→ {halt}] for program (λ (k) call), and

S̃′ = {ς̃ ′ : c̃ ∈ C̃ and (c̃, σ̂) ⇒Σ̃ ς̃ ′} C̃ ′ = {c̃ : (c̃, σ̂) ∈ S̃′} σ̂′ =
⊔

(c̃,σ̂)∈S̃′

σ̂.

(Here ((call , ρ̂), σ̂) is treated as (call , ρ̂, σ̂) for convenience.) The definition uses
the standard semilattice definition for the store:

⊥σ̂ = λâ.∅ σ̂0 ⊔ σ̂1 = λâ.σ̂0(â) ∪ σ̂1(â) σ̂0 ⊑ σ̂1 ⇐⇒ ∀â ∈ Âddr .σ̂0(â) ⊆ σ̂1(â)

3 CPS and Restricted CPS

Program processors, such as compilers and analyzers, often desugar a rich surface
language into more uniform intermediate representation (IR). Modern languages
a rich in control constructs, such as branching, function call, early return, and
coroutines, and continuation-passing style (CPS) IRs, which express all control
transfer via function call, capably regularize such features. m-CFA is defined over
a quite general dialect of CPS in which λs can bind and calls can pass multiple
continuations, and continuation references can be captured in closure environ-
ments just as value references can [11]. Despite this generality, the uniformity of
CPS allows the m-CFA formalism to be given in terms of only a single rule.

Although CPS represents all control transfers as calls, CPS compilers do not
typically interpret them naïvely; instead, they recognize the role of continua-
tions in execution and keep them distinct from other values to apply particular
compilation strategies, such as allocating continuation closures on the stack [4].
Compilers maintain this distinction by statically partitioning their CPS language
into a user world and a continuation world. Terms in the user world correspond
to terms in the source program whereas terms in the continuation world are
those introduced by the CPS transformation. The distinction is carried into the
dynamic semantics as a partition into user- and continuation-world values that
respects the static partition: closures over λs are values from the λ’s world, are
bound exclusively to variables from that world, and are invoked exclusively at
call sites from that world.

6 K. Germane

pr ∈Prgm ::= (λ (k) call) call ∈Call = UCall+ CCall

ucall ∈UCall ::= (f e q)l ccall ∈CCall ::= (q e)γ

f, e ∈UExp = UVar + ULam q ∈CExp = CVar + CLam

u ∈UVar = a set of identifiers k ∈CVar = a set of identifiers
ulam ∈ULam ::= (λl (u k) call) clam ∈CLam ::= (λγ (u) call)

l ∈ULab = a set of labels γ ∈CLab = a set of labels

Fig. 2. A restricted CPS language

Figure 2 presents the grammar of a partitioned CPS language. A call comes
from either the user or the continuation world. A call in the user world has
operator, value, and continuation arguments; a call in the continuation world
has only continuation and value arguments. Arguments are user or continuation
expressions which consist of references and λs from the corresponding world. A
user-world λ has parameters for its value and continuation, and its body consists
of any kind of call. A continuation-world λ body is also any kind of call, but has
a parameter only for its value. Each call and λ is annotated with a label specific
to its world which distinguishes otherwise-identical terms. A program is a closed
λ binding a single continuation which is α-converted, i.e., in which every binding
instance of a variable is unique.

After converting the example program to this CPS language, we obtain the

(λ (k0)
((λa (id)

(id 10 (λb (y)
(id 12 (λc (z)

(+ y z k0)B))C))D)
(λA (x k1) (k1 x)d))e)

program to the right. The en-
tire program becomes a λ await-
ing a top-level continuation. The
first let* binding becomes an
immediate application of a let-
continuation binding id. The two
subsequent bindings become the
corresponding calls to id whose continuations bind y and z, respectively. The
body of the let* becomes a call to a continuation-aware definition of +
which is passed the top-level continuation. User-world labels are drawn from
{A,B,C, . . . } and continuation-world labels are drawn from {a, b, c, . . . }.

This language is restricted relative to the expressive dialect of CPS that
m-CFA supports in two ways: (1) calls pass exactly one continuation and (2)
continuation references cannot appear free in the user-world λ which encloses
them. These restrictions ensure that expressed programs exhibit only the simple
push–pop stack behavior of function calls, in contrast to that of control con-
structs such as call/cc which goes far beyond. Vardoulakis and Shivers [21]
present a variant of partitioned CPS they call restricted CPS or RCPS which
imposes the latter restriction but not the former; we call our doubly-restricted
variant R2CPS.

In R2CPS, the role of a CPS term in the source program can be determined
merely from its shape. For example, a tail call in the source program is translated

m-CFA Exhibits Perfect Stack Precision 7

to a user-world call whose continuation argument is a reference whereas a proper
call is translated to one whose continuation argument is a λ. We rely on this
ability heavily in the sequel, beginning in the next section.

4 m-CFAcps

R2CPS is a sublanguage of m-CFA’s more-general CPS dialect, so a definition
of m-CFA over it is no different than m-CFA itself. However, R2CPS allows us
to distinguish terms according to the role they play in the source program and
specialize the state transition to each. Figure 3 presents m-CFAcps , an R2CPS-
restricted m-CFA whose state transition has been factored across (and special-
ized to) user/continuation and tail/non-tail calls. Because the shape of the con-

⇒Σ̃cps
⊆ Σ̃cps × Σ̃cps

((f e clam)l, ρ̂, σ̂cps) ⇒Σ̃cps
(call , ρ̂′, σ̂′

cps), where

((λl (u k) call), ρ̂′) ∈ Êcps(f, ρ̂, σ̂cps) d̂ = Êcps(e, ρ̂, σ̂cps)

{x1, . . . , xn} = free((λl (u k) call)) q̂ = {(clam, ρ̂)}

ρ̂′′ = ⌊l :: ρ̂⌋m d̂i = σ̂cps(xi, ρ̂
′)

σ̂′
cps = σ̂cps ⊔ [(u, ρ̂′′) 7→ d̂] ⊔ [(k, ρ̂′′) 7→ q̂] ⊔ [(xi, ρ̂

′′) 7→ d̂i]

((k e)γ , ρ̂, σ̂cps) ⇒Σ̃cps
(call , ρ̂′, σ̂′

cps), where

((λγ (u) call), ρ̂
′) ∈ σ̂cps(k, ρ̂) d̂ = Êcps(e, ρ̂, σ̂cps) σ̂′

cps = σ̂cps ⊔ [(u, ρ̂′) 7→ d̂]

((f e k)l, ρ̂, σ̂cps) ⇒Σ̃cps
(call , ρ̂′, σ̂′

cps), where

((λl (u k) call), ρ̂′) ∈ Êcps(f, ρ̂, σ̂cps) d̂ = Êcps(e, ρ̂, σ̂cps)

{x1, . . . , xn} = free((λl (u k) call)) q̂ = σ̂cps(k, ρ̂)

ρ̂′′ = ⌊l :: ρ̂⌋m d̂i = σ̂cps(xi, ρ̂
′)

σ̂′
cps = σ̂cps ⊔ [(u, ρ̂′′) 7→ d̂] ⊔ [(k, ρ̂′′) 7→ q̂] ⊔ [(xi, ρ̂

′′) 7→ d̂i]

(((λγ (u) call) e)
γ , ρ̂, σ̂cps) ⇒Σ̃cps

(call ′, ρ̂′, σ̂′
cps), where

((λγ (u
′) call ′), ρ̂′) ∈ {((λγ (u) call), ρ̂)} d̂ = Êcps(e, ρ̂, σ̂cps) σ̂′

cps = σ̂cps ⊔ [(u′, ρ̂) 7→ d̂]

Êcps : UExp× Ênv × Ŝtorecps

Êcps(u, ρ̂, σ̂cps) = σ̂cps(u, ρ̂) Êcps(ulam, ρ̂, σ̂cps) = {(ulam, ρ̂)}

Fig. 3. R2CPS-restricted m-CFA factored across user/continuation and tail/non-tail
calls

8 K. Germane

tinuation is known, we inline the use of Êcps away in each rule. Similarly, because
the source world of the operator is known, we inline the use of n̂ew—which com-
putes the destination environment—away as well. A call (f e clam)l corresponds
to a non-tail call to the pre-CPS version of f in the source program. A call (k e)γ

corresponds to a return in the source program. A call (f e k)l corresponds to
a tail call to the pre-CPS version of f in the source program. Finally, a call
((λγ (u) call) e)

γ corresponds to a let in the source program.
These rules are merely the sole m-CFA transition rule, limited to R2CPS

terms, factored by and specialized to the shape of the call. We capture this fact
in the following lemma.

Lemma 1. For all call , call ′ ∈ Call, ρ̂, ρ̂′ ∈ Ênv , σ̂cps , σ̂
′
cps ∈ Ŝtore,

(call , ρ̂, σ̂cps) ⇒Σ̃ (call ′, ρ̂′, σ̂′
cps) if and only if (call , ρ̂, σ̂cps) ⇒Σ̃cps

(call ′, ρ̂′, σ̂′
cps).

A 1CFAcps analysis of the CPS’d example program yields (R̃, σ̂) where

R̃ = {(e, ⟨⟩), (D, ⟨⟩), (d, ⟨D⟩), (C, ⟨⟩), (d, ⟨C⟩), (B, ⟨⟩), (+, ⟨B⟩)}

and

σ̂ = [(k0, ⟨⟩) 7→ {halt}, (id, ⟨⟩) 7→ {(A, ⟨⟩)}, (x, ⟨D⟩) 7→ {10},
(k1, ⟨D⟩) 7→ {(b, ⟨⟩)}, (y, ⟨⟩) 7→ {10}, (x, ⟨C⟩) 7→ {12},
(k1, ⟨C⟩) 7→ {(c, ⟨⟩)}, (z, ⟨⟩) 7→ {12},
(+0, ⟨B⟩) 7→ {10}, (+1, ⟨B⟩) 7→ {12}]

in which each call is represented by its label. Note that the variables +0 and
+1, which correspond to the internal variables of the primitive +, are ultimately
bound to single, precise values. This precision is an artifact of call-site sensitivity
combined with precise call–return correspondence.

5 A-Normal Form

Many compilers [17, 9, 1, 16, 8] convert source programs to CPS in the middle end

λds •

λa λcps

F

A β̄

U

to do analysis and transformation before generating code. This
pipeline is depicted in the diagram to the right where a CPS
translation carried out by Fischer’s F [3] operates on a source
(direct-style) program in λds . However, the CPS translator
F introduces many administrative redexes which abstract the
continuation within a term. The β̄ rule reduces these so that repeated application
by β̄ to a normal form results in a term in λcps . (For our purposes, we can consider
λcps to be R2CPS.)

λcps terms can be evaluated with a CE machine [4], a machine which ma-
nipulates control and environment registers—m-CFA’s abstract machine is a
CE machine augmented with a store register. However, a CE machine models
a naïve evaluator which directly interprets CPS terms, allowing the program

m-CFA Exhibits Perfect Stack Precision 9

itself to manage the continuation. In practice, compilers track the continuation
by statically-partitioning the language (as in R2CPS) and manage it directly us-
ing a CE machine augmented with a kontinuation register—a CEK machine [2].
This machine uses the shape of each call to determine its role in evaluation. In
the call (k e)γ , for example, the CEK does not look up k in the environment,
as a CE machine would do, but instead recognizes this call as a function return
and manipulates the continuation register accordingly.

By intercepting the program’s continuation management, Flanagan et al. [4]
observe:

1. Explicit continuation references are unnecessary; only the role of the call
matters.

2. The CEK machine effectively inverts the CPS transformation (accurately
modeling a code generator).

From these observations they respond in two ways.
First, Flanagan et al. devise a set of axioms A which carry out the corre-

sponding reductions on a λds term as β̄ carries out on a CPS term, thus allowing
a λa term to be obtained without a round trip through CPS. Reduction by the
axioms A is normalizing, and a term in A-normal form (or ANF) is in λa , defined
below.

e ∈Exp ::= letγ x := ce in e | ce ce ∈CExp ::= (ae0 ae1)
l | aeγ

ae ∈AExp ::= λlx.e |x x ∈Var = a set of identifiers

Programs in λa lack explicit continuations but, like CPS, name all intermediate
values. A proper expression e is a let expression, which binds a call expression ce
to a variable whose scope is another proper expression, or a call expression itself.
A call expression ce is an atomic expression aeγ or an application (ae0 ae1)

l. An
atomic expression ae is a variable reference x or a λ abstraction λlx.e. A program
in λa is a closed expression that is α-converted. Call expressions are annotated
with the user-world labels of λcps ; let expressions and atomic expressions are
annotated with continuation-world labels. The set of λs λlx.e is Lam.

Second, Flanagan et al. define a function U that strips CPS terms of redun-
dant continuation information, converting λcps terms to λa terms. We present
U in Figure 4 as well as its inverse U−1. Defining U−1 is less straightforward
than defining U because U removes continuation references but U−1 must syn-
thesize them. To make synthesis straightforward, we define the set λWN

cps of
well-named R2CPS programs. A R2CPS program pr is well-named if, for each
user-world function (λl (u k) call), the name of k is derivable from UeJcallK by
Uk : Exp → CVar and vice versa by U−1

k : CVar → Exp. This correspondence
between an ANF expression and a continuation-world variable helps us build a
correspondence between different formulations of m-CFA (cf. §7). Any R2CPS
program can be α-converted to one that is well-named, so λWN

cps is not materially
smaller than λcps . The U and U−1 definitions are supported by variable conver-
sion functions Ux : UVar → Var and U−1

x Var → UVar which convert between

10 K. Germane

U : λWN
cps → λa

UJ(λ (k) call)K = UeJcallK

Ue : Call → Exp

UeJ((λγ′ (u) call) e)γK =
letγ′ UxJuK := UaeJeKγ inUeJcallK

UeJ(f e (λγ (u) call))
lK =

letγ UxJuK := (UaeJfK UaeJeK)l inUeJcallK
UeJ(k e)γK = UaeJeKγ

UeJ(f e k)lK = (UaeJfK UaeJeK)l

Uae : UExp → AExp

UJ(λl (u k) call)K = λlUxJuK.UeJcallK
UJuK = UxJuK

U−1 : λa → λWN
cps

U−1JprK = (λ (k)U−1
e JprK(k)) where k = UkJprK

U−1
e : Exp → CVar → Call

U−1
e Jletγ x := (ae0 ae1)

l in eK(k) =

(U−1
ae Jae0K U−1

ae Jae1K (λγ (U−1
x JxK)U−1

e JeK(k)))l

U−1
e Jletγ x := aeγ′

in eK(k) =

((λγ (U−1
x JxK)U−1

e JeK(k)) U−1
ae JaeK)γ

′

U−1
e J(ae0 ae1)

lK(k) = (U−1
ae Jae0K U−1

ae Jae1K k)l

U−1
e JaeγK(k) = (k U−1

ae JaeK)γ

U−1 : AExp → UExp

U−1Jλlx.eK = (λl (U−1
x JxK k)U−1

e JeK(k))
where k = UkJeK

U−1JxK = U−1
x JxK

Fig. 4. The λWN
cps –λa bijection pair U/U−1.

user-world variables in λcps and variables in λa . These functions precisely pre-
serve user- and continuation-world labels. The following lemma establishes that
these functions are indeed mutual inverses.

Lemma 2. U−1 ◦ U = IλWN
cps

and U ◦ U−1 = Iλa

leta id = (λAx.x
d)e

in letb y = (id 10)D

in letc z = (id 12)C

in (+ y z)B

Using U to convert the CPS version of the example
program yields the program to the right. While user-
world labels remain associated with their corresponding
λ or call, continuation-world labels on λs annotate lets
and on calls annotate atomic expressions.

6 m-CFAa

We now define m-CFAa , m-CFA for λa . We then extend the term isomorphism
of §5 to show that an m-CFAa analysis is isomorphic to a m-CFAcps analysis,
thus demonstrating that the continuation references in λcps are redundant with
respect to m-CFA just as they are for a CEK machine.

m-CFAa is defined in terms of an abstract CEK machine using the Abstract-
ing Abstracting Machines (AAM) methodology [19]. Whereas the continuation
register contains a representation of continuation, such as a stack, in a concrete
CEK machine, it contains the address of a store-allocated continuation in an
abstract CEK machine. (Anticipating our application of P4F in §8, we separate
values and continuations into dedicated stores.)

m-CFA Exhibits Perfect Stack Precision 11

Continuation variables, used to form continuation addresses in m-CFAcps ,
are not present in m-CFAa . However, we can use Uk correspondence of each
λcps continuation variable to the λa representation of its scope to obtain a m-
CFAa continuation address from each corresponding one in m-CFAcps . Thus, a
m-CFAa continuation address consists of an expression entailing a continuation
scope—a λ body or the program itself—paired with an environment. For a fixed
program pr (with unique labels), the body of the innermost-enclosing λ of any
expression is apparent; we assume a function ζpr : Exp → Exp which produces
the body of the innermost-enclosing λ of the given expression, or the entire
program if it is not enclosed. This function allows us to derive the continuation
address (ζpr (e), ρ̂) from the CE registers (e, ρ̂) and in turn omit the K register
from configurations altogether.

Figure 5 presents m-CFAa system space and transfer function. Evaluation of
the let-binding of a call creates an abstract frame ar(x, e, ρ̂) which consists of the
bound variable, body expression, and environment. This frame contains a link to
the previous frame, but only implicitly, as we will see momentarily. The transi-
tion constructs an environment for the call and extends the value store, copying
bindings of free variables, in the standard way. For the continuation address, it
uses the body expression of the called procedure paired with its environment, in
correspondence to the continuation variable of its CPS representation. Evalua-
tion of an atomic expression, which represents a function return, looks up the
top frame to bind the return value and continue evaluation. The continuation
address is derived from the atomic expression itself using ζpr . The atomic ex-
pression’s value is bound in the store and the expression and environment within
the stack frame are restored. Evaluation of a tail call is precisely the same as for
a let-bound call, except that the current continuation is obtained by synthesizing
the continuation address using ζpr and copied to the callee’s continuation ad-
dress. Similarly, evaluation of a let-bound atomic expression proceeds precisely
the same as for an atomic expression, except that the continuation to which the
value is “returned” is local.

An m-CFAa analysis is defined as the least fixed point of the function ⇒Ξ̃a
,

which is computed in the same way as ⇒Ξ̃cps
.

An [m = 1]-CFAa analysis of the ANF’d example program yields (R̃, σ̂, σ̃κ)
where

R̃ = {(e, ⟨⟩), (D, ⟨⟩), (d, ⟨D⟩), (C, ⟨⟩), (d, ⟨C⟩), (B, ⟨⟩), (+, ⟨B⟩)}

and

σ̂ = [(id, ⟨⟩) 7→ {(A, ⟨⟩)}, (x, ⟨D⟩) 7→ {10}, (y, ⟨⟩) 7→ {10},
(x, ⟨C⟩) 7→ {12}, (z, ⟨⟩) 7→ {12}, (+0, ⟨B⟩) 7→ {10},
(+1, ⟨B⟩) 7→ {12}]

and

σ̃κ = [(k0, ⟨⟩) 7→ {mt}, (d, ⟨D⟩) 7→ {(y, b, ⟨⟩)},
(d, ⟨C⟩) 7→ {(z, c, ⟨⟩)}].

12 K. Germane

ς̃ ∈ Σ̃a = Exp× Ênv × Ŝtorea × ˜KStore

σ̂a ∈Ŝtorea = Âddra → D̂a Âddra = Var × Ênv

σ̃κ ∈ ˜KStore = ˜KAddr → P(˜Frame) ˜KAddr = Exp× Ênv

d̂a ∈D̂a = P(Lam× Ênv) ˜Framea ::= mt | ar(x, e, ρ̂)

⇒Σ̃a
⊆ Σ̃a × Σ̃a

(letγ x := (ae0 ae1)
l in e, ρ̂, σ̂a , σ̃κ) ⇒Σ̃a

(e′, ρ̂′′, σ̂′
a , σ̃

′
κ), where

(λlx
′.e′, ρ̂′) ∈ Êa(ae0, ρ̂, σ̂a) d̂a = Êa(ae1, ρ̂, σ̂a)

{x1, . . . , xn} = free(λlx.e
′) ϕ̃ = {ar(x, e, ρ̂)}

ρ̂′′ = ⌊l :: ρ̂⌋m d̂ai = σ̂a(xi, ρ̂
′)

σ̂′
a = σ̂a ⊔ [(x, ρ̂′′) 7→ d̂a] ⊔ [(xi, ρ̂

′′) 7→ d̂ai]

σ̃′
κ = σ̃κ ⊔ [(e′, ρ̂′′) 7→ ϕ̃]

(aeγ , ρ̂, σ̂a , σ̃κ) ⇒Σ̃a
(e, ρ̂′, σ̂′

a , σ̃κ), where

ar(x, e, ρ̂′) ∈ σ̃κ(ζpr JaeγK, ρ̂) d̂a = Êa(ae, ρ̂, σ̂a) σ̂′
a = σ̂a ⊔ [(x, ρ̂′) 7→ d̂a]

((ae0 ae1)
l, ρ̂, σ̂a , σ̃κ) ⇒Σ̃a

(e′, ρ̂′′, σ̂′
a , σ̃

′
κ), where

(λlx.e
′, ρ̂′) ∈ Êa(ae0, ρ̂, σ̂a) d̂a = Êa(ae1, ρ̂, σ̂a)

{x1, . . . , xn} = free(λlx.e
′) ϕ̃ = σ̃κ(ζpr J(ae0 ae1)

lK, ρ̂)

ρ̂′′ = ⌊l :: ρ̂⌋m d̂ai = σ̂a(xi, ρ̂
′)

σ̂′
a = σ̂a ⊔ [(x, ρ̂′′) 7→ d̂a] ⊔ [(xi, ρ̂

′′) 7→ d̂ai]

σ̃′
κ = σ̃κ ⊔ [(e′, ρ̂′′) 7→ ϕ̃]

(letγ x := aeγ in e, ρ̂, σ̂a , σ̃κ) ⇒Σ̃a
(e′, ρ̂′, σ̂′

a , σ̃κ), where

ar(x′, e′, ρ̂′) ∈ {ar(x, e, ρ̂)} d̂a = Êa(ae, ρ̂, σ̂a) σ̂′
a = σ̂a ⊔ [(x′, ρ̂′) 7→ d̂a]

Êa : AExp× Ênv × Ŝtorea

Êa(x, ρ̂, σ̂a) = σ̂a(x, ρ̂) Êa(λlx.e, ρ̂, σ̂a) = {(λlx.e, ρ̂)}

ξ̃a ∈ Ξ̃a = R̃a × Ŝtorea × ˜KStore r̃a ∈ R̃a = P(C̃a) c̃a ∈ C̃a = Exp× Ênv

⇒Ξ̃a
: Ξ̃a → Ξ̃a

(C̃a , σ̂a , σ̃κ) ⇒Ξ̃a
(C̃init

a ∪ C̃ ∪ C̃′, σ̂′
a , σ̃

init
κ ⊔ σ̃′

κ) where

C̃init
a = {(pr , ⟨⟩)} σ̃init

κ = [(pr , ⟨⟩) 7→ {mt}]

S̃′
a = {ς̃ ′a : c̃a ∈ C̃a and (c̃a , σ̂a , σ̃κ) ⇒Σ̃a

ς̃ ′a} σ̂′
a =

⊔
(c̃a ,σ̂a ,σ̃κ)∈S̃′

a

σ̂a

C̃′
a = {c̃a : (c̃a , σ̂a , σ̃κ) ∈ S̃′

a} σ̃′
κ =

⊔
(c̃a ,σ̂a ,σ̃κ)∈S̃′

a

σ̃κ

Fig. 5. m-CFAa

m-CFA Exhibits Perfect Stack Precision 13

Value store allocations are identical to user-world allocations in m-CFAcps . Con-
tinuation frames (in which an expression is represented by its label) correspond
directly to continuation-world allocations, as we show in the next section.

7 m-CFAcps–m-CFAa Correspondence

We extend the λWN
cps –λa isomorphism through U to m-CFAcps–m-CFAa , first to

the state space, then to transition rules, and then finally to the entire analysis.
The definitions

U(call , ρ̂, σ̂cps) = (UeJcallK, ρ̂, σ̂a , σ̃κ) where (σ̂a , σ̃κ) = T (σ̂cps)

and
U−1(e, ρ̂, σ̂a , σ̃κ) = (U−1

e JeK(U−1
k (ζpr JeK)), T−1(σ̂a , σ̃κ))

extend it to the state space. Tpr/T−1
pr , seen in Figure 6, is a lattice isomorphism

(i.e. it is a bijection which commutes with the join operation and refinement
relation) between the m-CFAcps store lattice and the m-CFAa value and contin-
uation store product lattice. The Tpr/T−1

pr isomorphism induces an isomorphism

Tpr : Ŝtorecps → Ŝtorea × ˜KStore

Tpr (σ̂cps) = (σ̂a , σ̃κ) where

σ̂a = λ(x, ρ̂).{(λlUxJuK.UeJcallK, ρ̂′) : ((λl (u k) call), ρ̂′) ∈ σ̂cps(U−1
x JxK, ρ̂)}

σ̃κ = λ(e, ρ̂).{ar(UxJuK,UeJcallK, ρ̂′) : ((λγ (u) call), ρ̂
′) ∈ σ̂cps(U−1

k (ζpr JeK), ρ̂)}

∪{mt : halt ∈ σ̂cps(U−1
k (ζpr JeK), ρ̂)}

T−1
pr : Ŝtorea × ˜KStore → Ŝtorecps

T−1
pr (σ̂a , σ̃κ) = λ(z, ρ̂).


{((λl (U−1

x JxK k)U−1
e JeK(k)), ρ̂′) : (λlx.e, ρ̂

′) ∈ σ(z, ρ̂)}, if z = (u, 0)

{((λγ (U−1
x JxK)U−1

e JeK(k)), ρ̂′) : ar(x, e, ρ̂′) ∈ σ̃κ(ζpr JU−1
k (k)K, ρ̂)}

∪{halt : mt ∈ σ̃κ(ζpr JU−1
k (k)K, ρ̂)}, if z = (k, 1)

Fig. 6. Tpr/T−1
pr lattice isomorphism between S̃torecps and S̃torea × ˜KStore

between the system spaces Ξ̃cps and Ξ̃a (elided for space). We also use Tpr/T−1
pr

to establish that ⇒Σ̃cps
and ⇒Σ̃a

are isomorphic, which is proved straightfor-
wardly since each transition rule in m-CFAa corresponds to a transition rule in
m-CFAcps .

Lemma 3 (⇒Σ̃cps
–⇒Σ̃a

Isomorphism). For all ς̃cps , ς̃ ′cps ∈ Σ̃cps , ς̃cps ⇒Σ̃cps

ς̃ ′cps ⇐⇒ U(ς̃cps) ⇒Σ̃a
U(ς̃ ′cps) and, for all ς̃ , ς̃ ′ ∈ Σ̃a , ς̃ ⇒Σ̃a

ς̃ ′ ⇐⇒ U−1(ς̃a) ⇒Σ̃cps

U−1(ς̃ ′a).

From the Ξ̃cps–Ξ̃a isomorphism and the ⇒Σ̃cps
–⇒Σ̃a

isomorphism, we can show
that ⇒Ξ̃cps

and ⇒Ξ̃a
commute with the isomorphism.

14 K. Germane

Theorem 1 (m-CFAcps–m-CFAa Correspondence). The following diagram
commutes.

Ξ̃cps Ξ̃cps

Ξ̃a Ξ̃a

cps

U/U−1U/U−1

a

An immediate corollary is that the least fixed points of ⇒Ξ̃cps
and ⇒Ξ̃a

corre-
spond to one another so that m-CFAcps and m-CFAa compute the same analysis.

8 Perfect Stack Precision

k-CFA and m-CFA each model the execution of a program using a finite state
machine (FSM) in which the nodes are execution states and the edges are con-
trol transitions. This model has the benefit that it is easy to construct using
a straightforward workset algorithm. However, it is unable to capture the call–
return behavior of programs whose execution is mediated by a stack. In partic-
ular, it cannot precisely associate returns to points of call, instead discovering
spurious control paths within the program’s execution.

In the same year that m-CFA was presented, Vardoulakis and Shivers [20]
presented CFA2, a stack-precise CFA which models program execution with
a pushdown system instead of an FSM. Unlike an FSM, a pushdown model
allows to analysis to precisely associate each return to its corresponding call,
thereby significantly increasing control precision. Unfortunately, CFA2 suffers
from the shortcomings that (1) it is context-insensitive (i.e. monovariant); (2)
its algorithm is in EXPTIME, and (3) its algorithm uses a relatively-complex
summarization-based approach.

Follow-on work mitigated each of these shortcomings, achieving context sen-
sitivity, low computational complexity, and algorithmic simplicity [10, 7]. In one
fell swoop, Gilray et al. [6] resolved them all with the pushdown for free (or P4F)
technique to achieve perfect stack precision “for free” both in the sense that it
requires essentially no implementation effort and also in the sense that it doesn’t
increase the computational complexity of the target CFA. The technique derives
from two observations:

1. In an abstract-machine based CFA, the stack precision is determined by the
continuation allocator, a (often implicit) function âllocκ : Σ̂ × Exp × Ênv ×
Ŝtore → Âddrκ of the source configuration ς̂ ∈ Σ̂ and the target expression
e ∈ Exp, environment ρ̂ ∈ Ênv , and store σ ∈ Ŝtore.

2. Perfect stack precision is achieved when, within the same abstract invocation,
the set of continuations for an exit configuration is no less precise than that
of the corresponding entry configuration.

The technique entails only the following continuation allocator, by which an
address consists solely of the target expression and environment.

âllocκ(ς̂ , e, ρ̂, σ̂) = (e, ρ̂)

m-CFA Exhibits Perfect Stack Precision 15

In essence, the continuation address is the entry configuration itself (when the
store is factored out into the system space), which ensures that it only ever refers
to a single such configuration.

The P4F technique is formulated in an ANF setting; having formulated m-
CFA in such a setting, we are now positioned to apply P4F to realize a stack-
precise variant of m-CFA, which we set out to do in the next section.

9 m-CFA is Stack-Precise

The application of P4F to achieve perfect stack precision is straightforward: on
a call transition, allocate the continuation at an address consisting of the target
configuration’s expression and environment. By inspection, it is clear that m-
CFAa already uses this allocation strategy and consequently is already stack-
precise. It follows from Theorem 1 that R2CPS-limited m-CFA is and always
has been stack-precise. (We discuss this corollary in §10.)

While our primary result is largely in hand, we review the key pieces of the
proof of precision and discuss the modifications needed to account for tail calls,
which our setting has but P4F’s doesn’t.

9.1 Overview of Stack Precision

The property of precision—also called completeness—is dual to the property
of soundness. Whereas soundness conveys that every behavior in the reference
semantics is present in the abstract semantics, completeness conveys that no
other behavior is present. With respect to stacks, completeness means that every
stack implied by the abstract semantics is realizable by a reference semantics
which represents stacks explicitly. We now present this reference semantics ⇒Σ̂a

,
show that the abstract semantics ⇒Σ̃a

are sound with respect to ⇒Σ̂a
, define

what it means for a stack to be realizable by ⇒Σ̂a
and implied by ⇒Σ̃a

, and
finally prove that every stack implied by ⇒Σ̃a

is realizable by ⇒Σ̂a
. (We elide

the straightforward result that ⇒Σ̂a
is sound with respect to a concrete reference

semantics for space.)
Figure 7 presents a small-step semantics for λa in which each configura-

tion includes a stack instead of a continuation store. Except for the handling
of the continuation, this semantics is identical to the abstract semantics. When
an atomic expression is let-bound or the call is a tail call, the continuation is
undisturbed. When a call expression is let-bound, a frame is pushed on the con-
tinuation. Evaluation of an atomic expression pops the top frame and restores
its expression and environment as it binds the result.

An analysis in the system space Ξ̂a is defined as the least fixed point of ⇒Σ̂a
,

which is defined similarly to ⇒Σ̃a
. However, unlike the abstract system space Ξ̃a ,

the system space Ξ̂a is infinite due to unbounded stacks within configurations.
Consequently, the least fixed point of ⇒Σ̂a

is well-defined but incomputable.

16 K. Germane

ς̃a ∈ Σ̃a = Exp× Ênva × Ŝtorea × ̂Stacka

κ̂a ∈ ̂Stacka ::= mt | ar(x, e, ρ̂a , κ̂a)

⇒Σ̂a
⊆ Σ̂a × Σ̂a

(letγ x := aeγ in e, ρ̂, σ̂a , κ̂) ⇒Σ̂a
(e, ρ̂, σ̂′

a , κ̂)

d̂a = Êa(ae, ρ̂, σ̂a) σ̂′
a = σ̂a ⊔ [(x, ρ̂) 7→ d̂a]

(aeγ , ρ̂, σ̂a , κ̂) ⇒Σ̂a
(e, ρ̂′, σ̂′

a , κ̂
′)

d̂a = Êa(ae, ρ̂, σ̂a) κ̂ = ar(x, e, ρ̂′, κ̂′)

σ̂′
a = σ̂a ⊔ [(x, ρ̂′) 7→ d̂a]

(letγ x := (ae0 ae1)
l in e, ρ̂, σ̂a , κ̂) ⇒Σ̂a

(e′, ρ̂′′, σ̂′
a , κ̂

′)

(λlx
′.e′, ρ̂′) ∈ Êa(ae0, ρ̂, σ̂a) d̂a = Êa(ae1, ρ̂, σ̂a)

{x1, . . . , xn} = free(λlx.e
′) κ̂′ = ar(x, e, ρ̂, κ̂)

ρ̂′′ = ⌊l :: ρ̂⌋m d̂ai = σ̂a(xi, ρ̂
′)

σ̂′
a = σ̂a ⊔ [(x, ρ̂′′) 7→ d̂a] ⊔ [(xi, ρ̂

′′) 7→ d̂ai]

((ae0 ae1)
l, ρ̂, σ̂a , κ̂) ⇒Σ̂a

(e′, ρ̂′′, σ̂′
a , κ̂)

(λlx.e
′, ρ̂′) ∈ Êa(ae0, ρ̂, σ̂a) d̂a = Êa(ae1, ρ̂, σ̂a)

{x1, . . . , xn} = free(λlx.e
′) d̂ai = σ̂a(xi, ρ̂

′)

ρ̂′′ = ⌊l :: ρ̂⌋m

σ̂′
a = σ̂a ⊔ [(x, ρ̂′′) 7→ d̂a] ⊔ [(xi, ρ̂

′′) 7→ d̂ai]

Fig. 7. State transition rules ⇒Σ̂a

We relate the abstract state space Σ̃a and stack state space Σ̂a by way of an
abstraction function | · | : Σ̂a → Σ̃a where

|(e, ρ̂, σ̂a , κ̂)| = (e, ρ̂, σ̂a , F (ζpr JeK, ρ̂, κ̂))

The F metafunction allocates a stack frame-by-frame to produce a continu-
ation store in which all frames are allocated. It relies on the ζpr metafunction
which maps an expression to the body of its innermost-enclosing λ or the top-
level program if it is not enclosed.

F (e, ρ̂,mt) = ⊥ F (e, ρ̂, ar(x, e′, ρ̂′, κ̂′)) = F (ζpr Je′K, ρ̂′, κ̂′) ⊔ [(e, ρ̂) 7→ {ar(x, e′, ρ̂′)}]

We now define a polymorphic refinement relation ⊑ over stack states and
over abstract states. This relation descends componentwise: expressions, environ-
ments, and stacks each have a discrete refinement ordering (i.e. they are related
only by equality); store and continuation store refinements are as follows.

σ̂a ⊑ σ̂′
a ⇐⇒ ∀â ∈ Âddra .σ̂a(â) ⊆ σ̂′

a(â)

σ̃κ ⊑ σ̃′
κ ⇐⇒ ∀ãκ ∈ ˜KAddr .σ̃κ(ãκ) ⊆ σ̃′

κ(ãκ)

Using these definitions, stack state and abstract state refinements are as follows.

(e, ρ̂, σ̂a , κ̂) ⊑ (e, ρ̂, σ̂′
a , κ̂) ⇐⇒ σ̂a ⊑ σ̂′

a

(e, ρ̂, σ̂a , σ̃κ) ⊑ (e, ρ̂, σ̂′
a , σ̃

′
κ) ⇐⇒ σ̂a ⊑ σ̂′

a and σ̃κ ⊑ σ̃′
κ

We now express the simulation property that constitutes soundness.

Theorem 2 (Simulation). If |ς̂| ⊑ ς̃ and ς̂ ⇒Σ̂a
ς̂ ′, then there exists ς̃ ′ such

that ς̃ ⇒Σ̃a
ς̃ ′ and |ς̂ ′| ⊑ ς̃ ′.

m-CFA Exhibits Perfect Stack Precision 17

The proof proceeds by cases on the expression, showing in each case that the
abstract transition respects the relationship induced by F .

A path is a sequence of zero or more transitions from the initial state denoted
Î(pr) ⇒∗

Σ̂a
ς̂. A stack κ̂ is realizable with respect to a store σ̂a if (pr , ⟨⟩, σ̂a ,mt) ⇒∗

Σ̂a

(e, ρ̂, σ̂′
a , κ̂) for some expression e, environment ρ̂, and store σ̂′

a . A stack κ̂ is im-
plied with respect to a continuation address (e, ρ̂) and a continuation store σ̃κ,
which we denote κ̂ ∈σ̃κ (e, ρ̂), as follows.

mt ∈σ̃κ
(e, ρ̂) ⇐⇒ mt ∈ σ̃κ(e, ρ̂)

ar(x, e′, ρ̂′, κ̂′) ∈σ̃κ
(e, ρ̂) ⇐⇒ ar(x, e′, ρ̂′) ∈ σ̃κ(e, ρ̂) and κ̂′ ∈σ̃κ

(ζpr Je′K, ρ̂′)

An empty stack is implied at an address if mt resides there. A non-empty stack
is implied at an address if its top frame resides there and the remaining stack
is implied by the continuation address derived from that frame. A configuration
uniquely determines a continuation address, so it is sensible to consider the stacks
realizable at a configuration.

Now we are able to state the precision property which, essentially, is that
every reachable configuration and continuation thereat is reachable by a stack-
respecting path.

Theorem 3 (Stack Precision). Suppose ξ̃ = (r̃, σ̂a , σ̃κ) is the least fixed point
of ⇒Σ̃a

. For each (e, ρ̂) ∈ r̃ and κ̂ such that κ̂ ∈σ̃κ
(ζpr JeK, ρ̂), there exists a path

(pr , ⟨⟩, σ̂a ,mt) ⇒Σ̂a
(e, ρ̂, σ̂a , κ̂).

As with Gilray et al. [6], the theorem is proved with two inductions, first on
the path length, and second on the continuation. We omit their well-formedness
property, instead relying on the supposed analysis being a least fixed point,
which serves the same purpose to ensure that each present configuration and
continuation has a reason to be. It is this property that allows the proof to easily
accommodate tail calls; namely, once proper callers are ruled out as predecessors
to an invocation entry, there must be a tail call which has the continuation of
the entry, by definition of the continuation store tail call transition.

10 Discussion

An immediate consequence of the result that m-CFAa is stack-precise (Theo-
rem 3) is that m-CFAcps is too, since the two analyses are isomorphic (Theo-
rem 1).

This consequence itself is a striking result since the development of m-CFAcps

(1) was concurrent to and independent of the development of CFA2, the first
stack-precise CFA, (2) makes no mention of stack precision, and (3) preceded
P4F by more than half a decade. It also places m-CFA in a sweet spot in the CFA
space, being a (1) polynomial-time, (2) stack-precise, (3) context-sensitive CFA
hierarchy (4) implementable using a straightforward workset-based algorithm.

However, m-CFA exhibits additional advantages when it comes to non-local
control constructs, such as exceptions, escapes, coroutines, up to full continu-
ations. To illustrate, consider stack-precise CFAs computed by summarization

18 K. Germane

algorithms, such as CFA2. With such analyses, it is difficult to extend the an-
alyzed language with non-local control constructs because the summarization
algorithm is the sole manager of the stack. Thus, any stack-touching control
feature requires the summarization algorithm to be modified in a nontrivial way.
This complex algorithm lies at the heart of the analysis’s soundness property,
which means that such a modification requires the soundness of the analysis to
be reestablished. To do this work once and for all, Vardoulakis and Shivers [22]
extend the CFA2’s summarization algorithm to support call/cc, in terms of
which a host of non-local control constructs can be expressed. But, by express-
ing a control feature in terms of call/cc to obtain analysis support, one also
obtains at best the precision at which call/cc is analyzed, and not the higher
precision that weaker non-control constructs, such as exceptions and escapes,
enjoy, using more-tailored modifications to the summarization algorithm [5].

In contrast, m-CFA appears to handle such contructs in its unrestricted CPS
language seamlessly, with no modification to its workset algorithm, and with
as much precision as current techniques. For example, when using the well-
known “double-barrelled CPS” technique to encode exceptions [18], it appears
that m-CFA is able to maintain perfect stack precision (also called “relative com-
pleteness” with reference to exceptions [5]) with no modification to the analysis
whatsoever. We intend to formally characterize the precision m-CFA offers dif-
ferent continuation patterns to allow clients to engineer the CPS transformation
instead of the analyzer.

The fact that m-CFAcps implements P4F is due to the clever way in which
Might et al. [13] are able to “pop” the stack of the top-m stack frames by treating
the stack frame context with the discipline of a static environment—indeed, it is
the static environment in the analysis. We can use this observation to completely
isolate m-CFA’s stack precision from its aggressive rebinding. That is, a variant
of m-CFA which used the top-m-stack-frames context abstraction but a k-CFA-
style environment would also be stack-precise (albeit exponential).

References

1. Appel, A.W.: Compiling with Continuations. Cambridge University Press (1992)
2. Felleisen, M., Friedman, D.P.: Control operators, the secd-machine, and the λ-

calculus. In: Wirsing, M. (ed.) Formal Description of Programming Concepts - III:
Proceedings of the IFIP TC 2/WG 2.2 Working Conference on Formal Description
of Programming Concepts - III, Ebberup, Denmark, 25-28 August 1986. pp. 193–
222. North-Holland (1987)

3. Fischer, M.J.: Lambda calculus schemata. In: Proceedings of ACM Conference on
Proving Assertions About Programs, Las Cruces, New Mexico, USA, January 6-7,
1972. pp. 104–109. ACM (1972)

4. Flanagan, C., Sabry, A., Duba, B.F., Felleisen, M.: The essence of compiling with
continuations. SIGPLAN Not. 28(6), 237–247 (Jun 1993)

5. Germane, K., Might, M.: Relatively complete pushdown analysis of escape contin-
uations. In: Enea, C., Piskac, R. (eds.) Verification, Model Checking, and Abstract
Interpretation - 20th International Conference, VMCAI 2019, Cascais, Portugal,

m-CFA Exhibits Perfect Stack Precision 19

January 13-15, 2019, Proceedings. Lecture Notes in Computer Science, vol. 11388,
pp. 205–225. Springer (2019)

6. Gilray, T., Lyde, S., Adams, M.D., Might, M., Van Horn, D.: Pushdown control-
flow analysis for free. In: Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. pp. 691–704. POPL ’16,
ACM, New York, NY, USA (Jan 2016)

7. Johnson, J.I., Van Horn, D.: Abstracting abstract control. In: Proceedings of the
10th ACM Symposium on Dynamic Languages. pp. 11–22. DLS ’14, ACM, New
York, NY, USA (Oct 2014)

8. Kennedy, A.: Compiling with continuations, continued. In: Hinze, R., Ramsey,
N. (eds.) Proceedings of the 12th ACM SIGPLAN International Conference on
Functional Programming, ICFP 2007, Freiburg, Germany, October 1-3, 2007. pp.
177–190. ACM (2007)

9. Kranz, D.A., Kelsey, R., Rees, J., Hudak, P., Philbin, J.: ORBIT: an optimizing
compiler for scheme. In: Wexelblat, R.L. (ed.) Proceedings of the 1986 SIGPLAN
Symposium on Compiler Construction, Palo Alto, California, USA, June 25-27,
1986. pp. 219–233. ACM (1986)

10. Might, C.E.M., Horn, D.V.: Pushdown control-flow analysis of higher-order pro-
grams: Precise, polyvariant and polynomial-time. In: Scheme Workshop (2010)

11. Might, M., Shivers, O.: Environment analysis via delta CFA. In: Morrisett, J.G.,
Jones, S.L.P. (eds.) Proceedings of the 33rd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL 2006, Charleston, South Carolina,
USA, January 11-13, 2006. pp. 127–140. ACM (2006)

12. Might, M., Shivers, O.: Improving flow analyses via gammaCFA: abstract garbage
collection and counting. In: Proceedings of the Eleventh ACM SIGPLAN Interna-
tional Conference on Functional Programming. pp. 13–25. ICFP ’06, ACM, New
York, NY, USA (Sep 2006)

13. Might, M., Smaragdakis, Y., Van Horn, D.: Resolving and exploiting the k -CFA
paradox: illuminating functional vs. object-oriented program analysis. In: Proceed-
ings of the 31st ACM SIGPLAN Conference on Programming Language Design and
Implementation. pp. 305–315. PLDI ’10, ACM, New York, NY, USA (Jun 2010)

14. Palsberg, J.: Closure analysis in constraint form. ACM Trans. Program. Lang.
Syst. 17(1), 47–62 (1995)

15. Sabry, A., Felleisen, M.: Is continuation-passing useful for data flow analysis? In:
Proceedings of the ACM SIGPLAN 1994 Conference on Programming Language
Design and Implementation. p. 1–12. PLDI ’94, Association for Computing Ma-
chinery, New York, NY, USA (1994)

16. Shivers, O.: Control-Flow Analysis of Higher-Order Languages. Ph.D. thesis,
Carnegie Mellon University, Pittsburgh, PA, USA (1991)

17. Steele Jr, G.L.: Rabbit: A compiler for Scheme. Massachusetts Institute of Tech-
nology (1978)

18. Thielecke, H.: Comparing control constructs by double-barrelled CPS. High. Order
Symb. Comput. 15(2-3), 141–160 (2002)

19. Van Horn, D., Might, M.: Abstracting abstract machines. In: Proceedings of the
15th ACM SIGPLAN International Conference on Functional Programming. pp.
51–62. ICFP ’10, ACM, New York, NY, USA (Sep 2010)

20. Vardoulakis, D., Shivers, O.: CFA2: A context-free approach to control-flow analy-
sis. In: Gordon, A.D. (ed.) Programming Languages and Systems, 19th European
Symposium on Programming, ESOP 2010, Held as Part of the Joint European
Conferences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus,

20 K. Germane

March 20-28, 2010. Proceedings. Lecture Notes in Computer Science, vol. 6012,
pp. 570–589. Springer (2010)

21. Vardoulakis, D., Shivers, O.: Ordering multiple continuations on the stack. In:
Khoo, S., Siek, J.G. (eds.) Proceedings of the 2011 ACM SIGPLAN Workshop on
Partial Evaluation and Program Manipulation, PEPM 2011, Austin, TX, USA,
January 24-25, 2011. pp. 13–22. ACM (2011)

22. Vardoulakis, D., Shivers, O.: Pushdown flow analysis of first-class control. In:
Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceeding of the 16th ACM SIG-
PLAN international conference on Functional Programming, ICFP 2011, Tokyo,
Japan, September 19-21, 2011. pp. 69–80. ACM (2011)

