
Full Control-Flow Sensitivity for Definitional
Interpreters

Technical Report

Kimball Germane

Brigham Young University

The Monad A monad m : Type → Type comprises a type operator and two
associated operations.

return : ∀A.A→ m(A) bind : ∀A.∀B.m(A)→ (A→ m(B))→ m(B)

where return injects a (relatively) pure computation into a monadic (effectful)
computation and bind sequences two effectful computations with functional de-
pendence. In general, we use the standard semicolon notation dox ← c; f(x)
in place of bind(c)(f) and allow newlines in place of semicolons in multi-line
definitions headed by do. The return and bind operations obey the following
laws:

bind(cmp)(return) ≡ cmp [right unit]

bind(return(x))(f) ≡ f(x) [left unit]

bind(bind(cmp)(f))(g) ≡ bind(cmp)(λx.bind(f(x))(g)) [associativity]

Reader Effect A monad m : Type → Type implements a reader effect for a type
r if it includes operators

ask : m(r) inEnv : ∀A.r ×m(A)→ m(A)

where ask obtains the environment value and inEnv installs a given environment
value for a given computation. The ask and inEnv operations obey the following
law:

inEnv(x, ask) ≡ return(x)

For example, the computation dox ← ask ; inEnv(x+ 1, cmp) runs the compu-
tation cmp in an environment value one greater than that of the overall compu-
tation.

State Effect A monad m : Type → Type implements a state effect for a type s if
it includes operators

get : m(s) put : s→ m(1)

2 Kimball Germane

which satisfy the state laws [1]

do put(x); get ≡ do put(x); return(x) (put–get)

dox← get ; put(x) ≡ return() (get–put)

do put(x); put(y) ≡ put(y) (put–put)

dox← get ; y ← get ; f(x, y) ≡ dox← get ; f(x, x). (get–get)

The put–get law ensures that get sees the effect of put , the get–put law that get
produces the entire state, the put–put law that the most-recent put takes effect,
and the get–get law that get does not modify the state.

Nondeterminism Effect A monad m : Type → Type implements a nondetermin-
ism effect if it includes operators

·⟨+⟩· : ∀A.m(A)×m(A)→ m(A) mzero : ∀A.m(A)

which satisfy the laws

mzero⟨+⟩cmp ≡ cmp⟨+⟩mzero ≡ cmp

dox← mzero; f(x) ≡ mzero

dox← cmp0⟨+⟩cmp1; f(x) ≡ [dox← cmp0; f(x)]⟨+⟩[dox← cmp0; f(x)]

In general, m(A) must be a monoid, with ⟨+⟩ its associative binary operator and
mzero its neutral element; in this work, we require m(A) to be a join-semilattice,
with ⟨+⟩ its join operator and mzero its bottom element.

Writer Effect A monad m : Type → Type implements a writer effect for a type
w if it includes an operator

log : w → m(1).

In general, w is required only to be a monoid; in this paper, we only ever use it
at a join-semilattice. For example, the computation do log(x); log(y); return(10)
produces the value 10 and logs the value x ⊔ y for x, y : w and ⊔ some join
operator over w.

1 Recovering a Concrete Semantics

To instantiate the interpreter, we instantiate each of the three parameters. Re-
markably, in doing so, we can instantiate either a concrete or an abstract seman-
tics. In this section, we provide instantiations which recover a concrete semantics;
in the next, we do the same for an abstract semantics.

We will define two concrete semantics, a standard semantics in which the
meaning of a program is its result and a collecting semantics in which the mean-
ing of a program is an association between encountered configurations and their

Full Control-Flow Sensitivity for Definitional Interpreters 3

results. Both semantics share a the value domain Valc and the timestamp set
Timec, defined as follows.

Valc := P(Z ∪ Cloc) Timec := Call∗ Cloc := CloTimec

Env c := EnvTimec Storec := StoreTimec,Valc

Figure 1 presents the injection and projection functions, primitive operation
interpretation function, and timestamp increment function. As Valc is a powerset

Iint : Z→ Valc Eif0 : Valc → P(Bool)
Iint(i) := {i} Eif0 (v) := {true : 0 ∈ v} ∪ {false : i ∈ v, i ̸= 0}
Iclo : Cloc → Valc Eclo : Valc → P(Cloc)

Iclo(c) := {c} Eclo(v) := {c : c ∈ v}
tick : Call× Timec → Timec δ : IOp→ Valc ×Valc → Valc

tick(e, τ) := eτ δJ+K(v0, v1) := {i0 + i1 : i0 ∈ v0; i1 ∈ v1}
δJ−K(v0, v1) := {i0 – i1 : i0 ∈ v0; i1 ∈ v1}

Fig. 1. The concrete value domain and timestamp set

domain, the injection and projection functions are set-oriented. However, in the
concrete domain, these sets are only ever singleton or empty, and therefore the
powerset domain is used merely to encode failure. The initial time τ0 = ϵ.

1.1 Standard Semantics

We first instantiate a standard semantics in which the meaning of a program
is its final value and store (encoded using nondeterminism). First, we define
configurations and results as follows.

Configc := Exp× Env c × Storec × Timec Resultc := P(Valc × Storec)

We then define a type operator Conc which admits a monad instance will reader,
nondeterminism, and state effects as follows.

Conc := ∀A.Env c → Storec → Timec → P(A× Storec)

Figure 2 contains the monad instance for Conc to support the standard seman-
tics. Conc provides access to the environment and timestamp via reader effects,
access to the store via a state effect, and encodes failure via a nondeterminism
effect (carried through from the value domain). The reader and state effects are
defined in terms of the base monad where possible to insulate their definitions
from other effects, such as nondeterminism. The base monad threads the store

4 Kimball Germane

Conc := ∀A.Envc → Storec → Timec → P(A× Storec)

returnConc : ∀A.A→ Conc(A)

returnConc(x)(ρ)(σ)(τ) := {(x, σ)}

bindConc : ∀A.∀B.Conc(A)→ (A→ Conc(B))→ Conc(B)

bindConc(cmp)(f)(ρ)(σ)(τ) := f(x1)(ρ)(σ1)(τ) ∪ · · · ∪ f(xn)(ρ)(σn)(τ)

where {(x1, σ1), . . . , (xn, σn)} := cmp(ρ)(σ)(τ)

· ⟨+⟩· : ∀A.Conc(A)× Conc(A)→ Conc(A)

cmp0⟨+⟩cmp1 := λρ.λσ.λτ.cmp0(ρ)(σ)(τ) ∪ cmp1(ρ)(σ)(τ)

mzeroConc : ∀A.Conc(A)

mzeroConc(ρ)(σ)(τ) := ∅

askConc
ρ : Conc(Envc)

askConc
ρ (ρ)(σ)(τ) := returnConc(ρ)(ρ)(σ)(τ)

inEnvConc
ρ : ∀A.EnvTimec × Conc(A)→ Conc(A)

inEnvConc
ρ (ρ, cmp)()(σ)(τ) := cmp(ρ)(σ)(τ)

getConc
σ : Conc(Storec)

getConc
σ (ρ)(σ)(τ) := returnConc(σ)(ρ)(σ)(τ)

putConc
σ : Storec → m(1)

putConc
σ (σ)(ρ)()(τ) := returnConc(⟨⟩)(ρ)(σ)(τ)

askConc
τ : Conc(Timec)

askConc
τ (ρ)(σ)(τ) := returnConc(τ)(ρ)(σ)(τ)

inEnvConc
τ : ∀A.Timec × Conc(A)→ Conc(A)

inEnvConc
τ (τ, cmp)(ρ)(σ)() := cmp(ρ)(σ)(τ)

Fig. 2. The concrete monad for the standard semantics

Full Control-Flow Sensitivity for Definitional Interpreters 5

with each value, treating it path-sensitively. The concrete semantics is determin-
istic, with observations on values producing at most one value, so each result set
is in fact singleton or empty, though the definitions are able to handle the more
general case.

Lemma 1. The instance for Conc satisfies the monad, nondeterminism, reader,
and state laws.

The result follows exactly from the definitions of the instance.
Instantiated with Conc, the type of the interpreter evalConc after receiving

its open-recursive argument is

Exp→ Conc(Valc) := Exp→ Env c → Storec → Timec → Resultc.

In particular, it maps an expression to an effectful computation producing a
result. In anticipation of our framework, we have in contrast defined the pro-
gram’s meaning in terms of configurations and results. To bridge between these
different notions of meaning, we define in Figure 3 a pair of functions γConc

and αConc which translate to and from the former notion to the latter, respec-
tively. This figure also defines interpConc to evaluate a program pr . using the

γConc : (Exp→ Conc(Valc))→ Configc → Resultc

γConc(eval)(e, ρ, σ, τ) := eval(e)(ρ)(σ)(τ)

αConc : (Configc → Resultc)→ Exp→ Conc(Valc)

αConc(exec)(e)(ρ)(σ)(τ) := exec(e, ρ, σ, τ)

interpConc : Exp→ Resultc

interpConc(pr) := γConc(fix (evalConc))(I(pr))

Fig. 3. Semantic bridge functions for the standard semantics

operator fix : ∀A.∀B.((A → B) → (A → B)) → A → B which yields the fixed
point of an argument function of the appropriate type and the program injec-
tor I which injects a program pr into an initial configuration (pr , ρ0, σ0, τ0).
interpConc merely wraps the fixed point of the evaluator—becoming an unin-
strumented interpreter—with γConc to unpack the incoming configuration and
package the produced result.

1.2 Collecting Semantics

Whereas the standard semantics provides a summary of (only) the initial con-
figuration’s evaluation, in terms of its resulting value and store, a collecting
semantics produces a summary of each configuration’s evaluation in those same
terms. These summaries are recorded in a cache Cachec := Configc 7→ Resultc.

6 Kimball Germane

To produce this cache, we instrument the evaluator by composing it with
a function which intercepts and records the evaluator’s results before passing
them on to its context. The composed function records the results into a cache
specific to each evaluation path and which is conglomerated using a monadic
writer effect.

We first define a type operator Collc whose sole responsibility is to manage
the cache, which it does via a writer effect.

Collc : Type → Type

Collc := ∀A.A× Cachec

In terms of Collc, we define the type operator Colle to parameterize the evalu-
ation function.1

Colle : Type → Type

Colle := ∀A.Env c → Storec → Timec → Collc(P(A× Storec))

Figure 4 presents the monad instance for Collc and Colle to support the col-
lecting semantics. In each monadic operation, the cache acts as a log. When

Collc : Type → Type

Collc := ∀A.A× Cachec

Colle : Type → Type

Colle := ∀A.Envc → Storec → Timec → Collc(P(A× Storec))

returnColle : ∀A.A→ Colle(A)

returnColle(x)(ρ)(σ)(τ) := ({(x, σ)},⊥)

bindColle : ∀A.∀B.Colle(A)→ (A→ Colle(B))→ Colle(B)

bindColle(cmp)(f)(ρ)(σ)(τ) := (∅, $) ⊔ f(x1)(ρ)(σ1)(τ) ⊔ · · · ⊔ f(xn)(ρ)(σn)(τ)

where ({(x1, σ1), . . . , (xn, σn)}, $) := cmp(ρ)(σ)(τ)

· ⟨+⟩· : ∀A.Colle(A)× Colle(A)→ Colle(A)

cmp0⟨+⟩cmp1 := λρ.λσ.λτ.cmp0(ρ)(σ)(τ) ⊔ cmp1(ρ)(σ)(τ)

mzeroColle : ∀A.Colle(A)

mzeroColle(ρ)(σ)(τ) := (∅,⊥)

Fig. 4. The concrete monad for the collecting semantics

monadic computations are sequenced or occur nondeterministically, their logs

1 It is possible and even convenient to define Collc in terms of monad transformers.
We refrain from doing so to reduce the amount of machinery and to make the raw
types more legible.

Full Control-Flow Sensitivity for Definitional Interpreters 7

are joined. We omit the definitions for the reader and state effects, which are
defined analogously to Conc.

Lemma 2. The instance for Colle satisfies the monad, nondeterminism, reader,
and state, and writer laws.

The result follows exactly from the definitions of the instance.
The join-semilattice instance for Cachec is defined

⊥Cachec := λς.∅ $0 ⊔Cachec $1 := λς.$0(ς) ∪ $1(ς)

where the $ metavariable indicates a cache. We will omit the subscripts when
context makes the reference clear.

These two monads embody the two notions of evaluation from the previ-
ous section—one in which configurations are executed to results and another in
which expressions are evaluated to values. (The subsequent use of the names eval
and exec will be consistent with this distinction.) As with Conc, the functions
αColl and γColl defined in Figure 5 convert between these notions. The execCollc

cache

γColle : (Exp→ Collc(Val))→ Config → Collc(Resultc)

γColle(eval)(e, ρ, σ, τ) := eval(e)(ρ)(σ)(τ)

αColle : (Config → Collc(Resultc))→ Exp→ Colle(Valc)

αColle(exec)(e)(ρ)(σ)(τ) := exec(e, ρ, σ, τ)

execCollc
cache : (Configc → Collc(Resultc))→ Configc → Collc(Resultc)

execCollc
cache(exec)(ς) := (r, $ ⊔ [ς 7→ r]) where (r, $) := exec(ς)

execCollc : Configc → Collc(Resultc)

execCollc := fix (λexec.execCollc
cache(γ

Colle(evalColle(αColle(exec)))))

interp : Exp→ Cachec

interp(pr) := $ where (r, $) := execCollc(I(pr))

Fig. 5. Semantic bridge functions, caching function, execution function, and top-level
interpretation function for the collecting semantics

function executes a given configuration by way of its open-recursive argument,
intercepts the result and cache, and produces the result and cache joined with
a cache that associates the result to the configuration. The definition of the
execCollc function composes this caching function and the evaluation function
evalColle , mediated by αColl and γColl , which, after taking the fixed point, yields
an execution function that produces a result and cache. The top-level interpre-
tation function invokes execCollc on the initial configuration and produces the
cache, discarding the result.

8 Kimball Germane

Given that it recovers the concrete semantics, this interpretation function
is not computable: it will diverge if handed a diverging program. To obtain a
computable (and sound) account of evaluation, we now turn to recovering the
abstract semantics.

2 Abstract Semantics Monad and Effects

Figure 6 presents the monad instance for Fulleval in terms of that for Full to
support the abstract semantics. The result follows exactly from the definitions
of the instance.

Figure 7 defines accessors to configuration components, such as environments
and stores, in terms of the monadic reader and state effects.

3 Example Analysis

Figure 9 contains an analysis of the program in Figure 8 in which the store is
treated flow-sensitively. We present a 0CFA analysis in which the address space
is simply the space of program variables. In this setting, environments are not
informative (as they map each variable to itself) so we omit them. Thus, the
control-sensitive quantities are instantiated as follows.

U = 1 V = 1 W = Ŝtore Y = 1

Under these instantiations, Control is isomorphic to Exp. Within the analysis,
expressions are identified by line numbers except for then and else clauses which
do not occupy their own line and are identified by line numbers and a clause
indication. This analysis subjects N to a sign abstraction and x and y to a
powerset abstraction. The presentation proceeds by iteration. At iteration 1, the
analysis assumes that the program is reachable and that N has any value.

References

1. Gibbons, J., Hinze, R.: Just do it: simple monadic equational rea-
soning. In: Chakravarty, M.M.T., Hu, Z., Danvy, O. (eds.) Proceed-
ing of the 16th ACM SIGPLAN international conference on Func-
tional Programming, ICFP 2011, Tokyo, Japan, September 19-21,
2011. pp. 2–14. ACM (2011). https://doi.org/10.1145/2034773.2034777,
https://doi.org/10.1145/2034773.2034777

Full Control-Flow Sensitivity for Definitional Interpreters 9

Fulleval : Type → Type

Fulleval(a) := U → V → Full(a× V)

returnFulleval : ∀A.A→ Fulleval(A)

returnFulleval (x)(u)(v) := returnFull(x, v)

bindFulleval : ∀A.∀B.Fulleval(A)→ (A→ Fulleval(B))→ Fulleval(B)

bindFulleval (cmp)(f)(u)(v0) := bindFull(cmp(u)(v1))(λ(x, v1).f(x)(u)(v1))

⟨+⟩Fulleval : ∀A.Fulleval(A)× Fulleval(A)→ Fulleval(A)

cmp0⟨+⟩
Fulleval cmp1 := λu.λv.cmp0(u)(v) ⊔ cmp1(u)(v)

mzeroFulleval : ∀A.Fulleval(u)

mzero(u)(v) := mzeroFull

ask
Fulleval
U : Fulleval(U)

ask
Fulleval
U (u)(v) := returnFull(u, v)

inEnv
Fulleval
U : ∀A.U × Fulleval(A)→ Fulleval(A)

inEnv
Fulleval
U (u, cmp)()(v) := cmp(u)(v)

get
Fulleval
V : Fulleval(V)

get
Fulleval
V (u)(v) := returnFull(v, v)

put
Fulleval
V : V → Fulleval(1)

put
Fulleval
V (v)(u)() := returnFulleval (⟨⟩)(u)(v)

get
Fulleval
W : Fulleval(W)

get
Fulleval
W (u)(v) := bindFull(getFullC)(λw.returnFull(w, v))

put
Fulleval
W : W → Fulleval(1)

put
Fulleval
W (c)(u)(v) := putFullC (c); returnFull(⟨⟩, v)

get
Fulleval
Y : Fulleval(Y)

get
Fulleval
Y (u)(v) := bindFull(getFullY)(λy.returnFull(y, v))

put
Fulleval
Y : Y → Fulleval(1)

put
Fulleval
Y (y)(u)(v) := putFullY (y); returnFull(⟨⟩, v)

Each monadic definition focuses on distributing the per-path component u and thread-
ing the state component v appropriately.

Fig. 6. The monad instance for Fulleval with reader, state, and nondeterminism effects

10 Kimball Germane

askFulleval
ρ : Fulleval(Ênv)

askFulleval
ρ := do (ρ,)← ask

Fulleval
U ; returnFulleval (ρ)

inEnvFulleval
ρ : ∀A.Ênv × Fulleval(A)→ Fulleval(A)

inEnvFulleval
ρ (ρ, cmp) := do τ ← getFullevalτ ; inEnv

Fulleval
U ((ρ, τ), cmp)

askFulleval
τ : Fulleval(T̂ime)

askFulleval
τ := do (, τ)← ask

Fulleval
U ; returnFulleval (τ)

inEnvFulleval
τ : ∀A.T̂ime × Fulleval(A)→ Fulleval(A)

inEnvFulleval
τ (τ, cmp) := do ρ← getFullevalρ ; inEnv

Fulleval
U ((ρ, τ), cmp)

getFullevalσ : Fulleval(Ŝtore)

getFullevalσ := get
Fulleval
V

putFullevalσ : Ŝtore → Fulleval(1)

putFullevalσ := put
Fulleval
V

Fig. 7. Accessors for configuration components

1: letx := in
2: if0(N){ 5: let y :=
3: if0(N){1} else {2} 6: if0(N){5} else {6}

} else { in
4: if0(N){3} else {4} 7: exit(x, y)

}

Fig. 8. A program to illustrate path and flow sensitivity

Full Control-Flow Sensitivity for Definitional Interpreters 11

Reachable, Flow-sensitive, Results

1 R0 := {1},
$w0 := [1 7→ [N−,0,+ := N 7→ {−, 0,+}]], $0 := ⊥

2 R1 := R0 ∪ {2},
$w1 := $w0 [2 7→ [N−,0,+]], $0

3 R2 := R1 ∪ {3, 4},
$w2 := $w1 [3 7→ [N0 := N 7→ {0}], 4 7→ [N−,+ := N 7→ {−,+}]], $0

4 R3 := R2 ∪ {3.then, 4.else},
$w3 := $w2 [3.then 7→ [N0], 4.else 7→ [N−,+]], $0

5 R3,
$w3 , $1 := $0[3.then 7→ ({1}, [N0]), 4.else 7→ ({4}, [N−,+])]

6 R3,
$w3 , $2 := $1[3 7→ ({1}, [N0]), 4 7→ ({4}, [N−,+])]

7 R3,
$w3 , $3 := $2[2 7→ ({1, 4}, [N−,0,+])]

8 R4 := R3 ∪ {5},
$w4 := $w3 [5 7→ [x := x 7→ {1, 4},N−,0,+]], $3

9 R5 := R4 ∪ {6},
$w5 := $w4 [6 7→ [x,N−,0,+]], $3

10 R5 := R4 ∪ {6.then, 6.else},
$w6 := $w5 [6.then 7→ [x,N0], 6.else 7→ [x,N−,+]], $3

11 R5

$w6 , $4 := $3[6.then 7→ ({5}, [x,N0]), 6.else 7→ ({6}, [x,N−,+])]]

12 R5

$w6 , $5 := $4[6 7→ ({5, 6}, [x,N−,0,+])]

13 R6 := R5 ∪ {7}
$w7 := $w6 [7 7→ [x,y := y 7→ {5, 6},N−,0,+]], $5

14 R6

$w7 , $6 := $5[7 7→ ({(1, 5), (1, 6), (4, 5), (4, 6)}, [x,y,N−,0,+])]

15 R6

$w7 , $6 := $6[5 7→ ({(1, 5), (1, 6), (4, 5), (4, 6)}, [x,y,N−,0,+])]

16 R6

$w7 , $7 := $6[1 7→ ({(1, 5), (1, 6), (4, 5), (4, 6)}, [x,y,N−,0,+])]

Fig. 9. A 0CFA analysis of the example program with a flow-sensitive store

