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Abstract. Static analyzers can exhibit a variety of control-flow sensitiv-
ities, including path and flow sensitivity. Darais et al. provide an account
of these sensitivities rooted in “control properties of the interpreter” for
static analyzers that model program behavior as a finite-state transition
system. In the meantime, many static analyzer frameworks—particularly
those for higher-order languages—have migrated to more sophisticated
and precise pushdown models which admit evaluation summaries. It is
not immediately clear how to realize the full spectrum of path and flow
sensitivity in a summary-based setting which, like that of Darais et al.,
is rooted in the control properties of the interpreter and therefore inde-
pendent of all other aspects of the analyzer formulation. We present a
framework which achieves precisely this. We also provide a caching algo-
rithm which performs summarization and demonstrate the framework on
an abstract definitional interpreter. Altogether, we show how to achieve
the full range of path and flow sensitivities, even at once, within a single
abstract definitional interpreter-based analysis, completely independent
of other aspects of its formulation.

1 Control-Flow Sensitivity

A central feature of a program analysis is its control-flow sensitivity [15], or
how precisely it accounts for the program’s realizable execution paths. Types of
control-flow sensitivity include path sensitivity, which maintains high fidelity to
realizable execution paths, and flow sensitivity, which aggregates the contribu-
tions of paths as they pass through each program point.

Modular abstract interpreters [6] account for path and flow sensitivity through
the associativity of each fact base to individual program points in the system
space of the analysis. We recap this account using the program in Figure 1. In
this program, the if0 construct produces the value of its first block if its dis-
criminee is zero and the value of its second block if it is nonzero. We assume
that the zero–nonzero status of N is not determined when control enters the
program. We now break down how different associativities between fact bases
and program points induce different control-flow sensitivities within an analysis.

1. Path-sensitive analysis A path-sensitive analysis tracks and correlates data
and control flow precisely by distinguishing the occurrence of each fact base
and program point. In such an analysis, program points 3 and 4 are are
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1: letx := in
2: if0(N){ 5: let y :=
3: if0(N){1} else {2} 6: if0(N){5} else {6}

} else { in
4: if0(N){3} else {4} 7: exit(x, y)

}

Fig. 1. A program to illustrate path and flow sensitivity

mutually exclusive within paths as the analysis holds {N = 0} at program
point 3 and {N ̸= 0} at program point 4. This distinction is maintained so
that the analysis arrives at program point 6 along two control flow paths.
In one, the analysis holds the fact base {N = 0, x = 1} and, in the other,
{N ̸= 0, x = 4}. By program point 7, these fact bases are respectively
{N = 0, x = 1, y = 5} and {N ̸= 0, x = 4, y = 6} so that the analysis has
perfectly correlated the data flow of x and y.

2. Flow-sensitive analysis A flow-sensitive (but path-insensitive) analysis asso-
ciates a fact base with each program execution point but does not preserve
path-sensitive facts obtained up to that point. As before, such an analysis
holds {N = 0} at program point 3 and {N ̸= 0} at program point 4, and is
thus able to evaluate only one side of each conditional. However, at program
point 5, these fact bases are merged to {N ∈ Z, x ∈ {1, 4}}. Having lost a pre-
cise account of N , the analysis explores each branch of the conditional at pro-
gram point 6 and, at program point 7, holds {N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}},
which does not correlate x and y.

3. Flow-insensitive analysis A flow-insensitive analysis associates a single fact
base with all program points collectively which contains facts which must
hold at every program point. Because the most precise fact about N that
holds at every program point is N ∈ Z, the analysis must consider every
branch of every conditional guarded on N . At program point 7, its fact base
is {N ∈ Z, x ∈ {1, 2, 3, 4}, y ∈ {5, 6}}.

Modular abstract interpreters earn the descriptormodular in part by allowing
the associativity between fact bases and program points to be treated indepen-
dently of other aspects of the analysis design and implementation. Because it is
regulated by this associativity, the control-flow sensitivity of the analysis is then
independent of those aspects as well.

1.1 Control-Flow Sensitivity in Pushdown Models

The preceding discussion proceeded in terms of program points, the primary
constituents of the finite-state models produced by the underlying (modular)
abstract interpreter. Many modern analysis frameworks—particularly those for
higher-order languages—model control behavior as a pushdown system com-
puted using summarization [3]. These frameworks therefore produce summaries
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which offer a richer account of control behavior than mere program points. It is
not immediately clear in this setting whether it is possible and how to realize
path and flow sensitivity in a way both reflected as particular associativities in
the system space and independent of other analysis aspects.

In this paper, we present a framework that achieves precisely this: the full
gamut of control-flow sensitivity for pushdown models facilitated by system space
associativities (§4) and alterable independent of other analysis design and imple-
mentation aspects (§5). Our framework also encompasses a unified system space
which allows each kind of sensitivity to manifest at once in a single analysis.

We present our framework in the setting of definitional interpreters which
both is consistent with modern frameworks [5, 26] and cleanly separates the
language semantics from the control-flow sensitivity. We start by defining such an
interpreter written in a particular monadic style, allowing it to be parameterized
over several key aspects of the analysis (§2). We then instantiate this interpreter
abstractly in steps before (§3) and after (§7) we present our framework.

The setting in which we instantiate our framework resembles that of the pop-
ular Abstracting Definitional Interpreters (ADI) [5] framework. The ADI frame-
work uses monads and monad transformers to allow one to swiftly construct and
modify an analysis. Through the interactions between these monad transform-
ers, it offers a form of widening we term result widening which exhibits aspects
of both path and flow sensitivity. We show how to integrate result widening into
our framework, thereby subsuming the control-flow sensitivity expressiveness of
the ADI framework (§8).

Summarization algorithms are intricate and caching algorithms can be sur-
prisingly subtle. As part of our framework, we also present a caching algorithm
to compute an analysis (§6).

We conclude by discussing related (§10) and future work (§11).

2 A Definitional Interpreter

To ground the presentation of our framework, we introduce a language by way of
a definitional interpreter, which will offer us a concrete artifact to embed within
our framework.

2.1 Language

We implement a definitional interpreter for the language λIF [6], the λ calculus
extended with integer operations and conditionals. Our framework can smoothly
handle semantics with mutation and strong update [2] via, e.g., abstract count-
ing [20, 16], recursive functions, compound data structures via, e.g., algebraic
data types, and other features. The language λIF is sufficient to demonstrate
different sensitivities within the framework.

The grammar of λIF is as follows.

e ∈ Exp ::= a | e⊙ e | if0(e){e} else {e} a ∈ Atom ::= i |x |λ(x).e
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i ∈ Z x ∈ Var ⊙ ∈ Op ::= ⊕ |@ ⊕ ∈ IOp ::= + | −

A program is a closed expression in Exp, which includes atomic expressions,
binary operator applications, and a conditional construct. An atom in Atom is
either an integer, a variable reference, or a λ term. Binary operators are either
integer operators for arithmetic or function application. In addition to these
domains, we make use of the set of λs Lam when defining closures and the set
of application sites Call when defining timestamps.

2.2 State Space

The forthcoming definitional interpreter uses the following state space defini-
tions.

α ∈ AddrTime := Var× Time ρ ∈ EnvTime := Var ⇀ AddrTime

σ ∈ StoreTime,Val := AddrTime → Val c ∈ CloTime := Lam× EnvTime

These definitions are parameterized over Time and Val the instantiations of
which will vary with context. The structure of addressses is fixed as a pair of
a variable and a timestamp. From the structure of addresses follows that of
environments as finite maps from variables to addresses and stores as maps
from addresses to values. In each semantics the set of values will be a domain
(equipped with a partial order and bottom element) that includes the set of
closures.

2.3 The Interpreter

Following Darais et al. [6], the interpreter itself is written in a particular monadic
style and is parameterized by:

1. a value domain which comprises the abstraction of primitive values and the
fidelity of primitive operations;

2. a timestamp discipline, which determines the kind of context sensitivity (e.g.
call-site or object sensitivity), as well as its degree; and

3. a monad which mediates access to analyzer functionality through various
effects (e.g. state and nondeterminism).

That is, we define the interpreter once and for all and instantiate it by defining
each of these aspects. We do so to recover an abstract semantics in §3 and a
concrete semantics in an accompanying technical report [8].

Value Domain The value domain comprises an abstract domain Val , injection
and projection operations for Val , and a denotation for primitive operators δJ·K.

Val must be a join-semilattice with

⊥ : Val · ⊔ · : Val ×Val → Val
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that respect the usual join-semilattice laws.
We must also provide operations which inject integers and closures into the

value domain and operations which project values into finite observations of
integers or closures.

Iint : Z→ Val Eif0 : Val → P(Bool)
Iclo : CloTime → Val Eclo : Val → P(CloTime)

These operations should obey the following adjoint laws.

{true} ⊆ Eif0 (Iint(i)) if i = 0

{false} ⊆ Eif0 (Iint(i)) if i ̸= 0

{c} ⊆ Eclo(Iclo(c))

Finally, primitive operation interpretation via δJ·K must be sound with re-
spect to the value refinement relation.

Iint(i0 + i1) ⊑ δJ+K(Iint(i0), Iint(i1))
Iint(i0 − i1) ⊑ δJ−K(Iint(i0), Iint(i1))

Abstract Time A timestamp embedded within configurations can be used to
effect various forms of context sensitivity [24, 10], including call-site sensitiv-
ity [22] and object sensitivity [23]. Whatever its kind, this sensitivity is orthog-
onal to the analysis’s path and flow sensitivity. We demonstrate in this paper
call-site sensitivity, instantiating Time as a sequence of call sites, bounded to a
length provided as a parameter k to the analysis. Even after selecting call-site
sensitivity, however, we are able to realize different variants of it by treating it
as a per-path component or a path-sensitive component, which we discuss later
in this section.

In our setting, an abstract time is determined by a set of times Time and
an operation tick : Call × Time → Time. There are no laws that tick must
obey; instead, the set of times merely provides unique markers which control the
precision at which analysis proceeds.

The Monad A monad m : Type → Type comprises a type operator and two
associated operations.

return : ∀A.A→ m(A) bind : ∀A.∀B.m(A)→ (A→ m(B))→ m(B)

In general, we use the standard semicolon notation dox ← c; f(x) in place
of bind(c)(f) and allow newlines in place of semicolons in multi-line definitions
headed by do. Such a monad implements a reader effect for a type r if it includes
the operators

ask : m(r) inEnv : ∀A.r ×m(A)→ m(A)
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where ask obtains the environment value and inEnv installs a given environment
value for a given computation. Such a monad implements a state effect for a type
s if it includes operators

get : m(s) put : s→ m(1)

where get produces the state, put sets it, and both satisfy the state laws [9] Such
a monad implements a nondeterminism effect if it includes operators

·⟨+⟩· : ∀A.m(A)×m(A)→ m(A) mzero : ∀A.m(A)

where, for this work, m(A) is a join-semilattice, with join operator ⟨+⟩ and
bottom element mzero. Finally, such a monad implements a writer effect for a
type w if it includes an operator

log : w → m(1).

Evaluator Figure 2 presents a definitional interpreter for λIF parameterized
by a given a value domain, timestamp discipline, and monad, each as described
above. The evaluator dispatches on the variant of expression being evaluated and

evalm : (Exp→ m(Val))→ Exp→ m(Val)

evalm(eval)(e) :=

case eof

a⇒ AmJaK
e0 ⊕ e1 ⇒ dom v0 ← eval(e0); v1 ← eval(e1); return

m(δJ⊕K(v0, v1))
e0 @ e1 ⇒ dom v0 ← eval(e0); v1 ← eval(e1); (λ(x).e

′, ρ)←↑m(Eclo(v0))

tickm(e,dom α← allocmσ (x); extendm
σ (α, v1); inEnvρ(ρ[x 7→ α], eval(e′)))

if0(e0){e1} else {e2} ⇒ dom v0 ← eval(e0); b←↑m(Eif0 (v0)); refine
m(e0, b)

eval(ite(b, e1, e2))

Fig. 2. Definitional interpreter for λIF

behaves accordingly. To evaluate an atomic expression a, the evaluator appeals
to Am, defined below. To evaluate a binary expression e0 ⊕ e1, the evaluator
evaluates the left argument, then the right, and then uses the primitive oper-
ation interpretation metafunction δJ·K of the given value domain to carry out
the actual operation. Apparently-recursive calls in this and subsequent clauses
of the evaluator are intercepted by the functional argument eval ; defining the
evaluator in this open-recursive style allows it to be instrumented, which we
demonstrate in §3. To evaluate an application expression e0@e1, the evaluator
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evaluates the function, then the argument, and then uses ↑m, defined below, to
extract a closure projected from the function value by Eclo . With a closure in
hand, the evaluator uses tickm to increment the timetamp, allocmσ to allocate a
new address, and extendm

σ to bind the argument in the store, each defined below.
Finally, to evaluate a conditional expression if0(e0){e1} else {e2}, the evaluator
evaluates the guard expression, then uses ↑m to extract a boolean projected
from the guard value by Eif0 . Before using this value to choose the appropriate
branch, refinem, defined below, narrows the guard value when the guard ex-
pression is merely a reference to it. The entire evaluator is parameterized by a
monad m, assumed to provide reader, nondeterminism, and state effects. Each
primitive superscripted by m is assumed to have access to these effects as well.

Primitive Evaluation Atomic expression evaluation is carried out by Am, de-
fined in Figure 3. Evaluation of an integer i returns the abstract value produced

AmJ·K : Atom→ m(Val)

AmJiK = returnm(Iint(i))

AmJxK = dom ρ← askm
ρ ; if x ∈ ρ then lookupm

σ (ρ(x)) else returnm(⊥)
AmJλ(x).eK = dom ρ← getmρ ; returnm(Iclo(λ(x).e, ρ))

Fig. 3. The atomic evaluation function

by the integer injection function Iint . Evaluation of a reference x obtains the
environment and uses lookupm

σ to look up its address in the store if it is in scope
and returns the bottom value if not. Evaluation of a λ obtains the environment
and returns the abstract value produced by the closure injection function Iclo .

Context Sensitivity We hardwire call-site sensitivity into this interpreter by plac-
ing the tickm function, responsible for incrementing the timestamp, at each call.
Its definition is in terms of a reader effect, which yields the sensitivity of stack-
based k-CFA (and m-CFA) in which the timestamp captures the top-k stack
frames. Under this effect, timestamps are treated with the same stack discipline
as environments.

tickm : ∀A.Call×m(A)→ m(A)

tickm(e, cmp) := dom τ ← askm
τ ; inEnvm

τ (tick(e, τ), cmp)

If the timestamp is managed instead by a state effect, as follows, the resulting
sensitivity is instead that of traditional k-CFA in which the timestamp captures
the most-recent-k calls. Under this effect, timestamps are treated with the same
threading discipline as stores.

tickm
alt : ∀A.Call×m(A)→ m(A)

tickm
alt(e, cmp) := dom τ ← getmτ ; putmτ (tick(e, τ)); cmp
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Value Refinement refinem allows evaluation in a branch to remember which
branch was taken, provided that the branch guard is syntactically a variable.

refinem : Exp× Bool → m(1)

refinem(x, b) := dom ρ← getmρ ;σ ← getmσ ;

letα := ρ(x) in putσ(σ[α 7→ σ(α) ⊓ f(b)])

refinem( , b) := returnm(⟨⟩)

where

f(b) :=

{
⊔{Iint(i) : i ∈ Z, i = 0} if b = true

⊔{Iint(i) : i ∈ Z, i ̸= 0} if b = false

It increases precision when the refined value is treated flow-sensitively. To il-
lustrate, suppose in the evaluation of if0(x){x + 1} else {1} that x is bound at
α in the environment which is itself bound to v in the store. Further suppose
that the integer projection of v Eif0 (v) = {0, 1} so that the evaluator evaluates
both branches. Without refinem, the evaluator will produce a value vr from the
consequent branch such that Iint(0 + 1) ⊔ Iint(1 + 1) ⊑ vr. With refinem, how-
ever, the evaluator sharpens v in the store before branch evaluation such that
Eif0 (v) = {0} so that Iint(0 + 1) ⊑ vr.

Store Access Access to the store is abstracted behind allocm, lookupm, and
extendm operations, defined themselves directly in terms of monadic state effects
as follows.

allocm : Var→ m(Addr)

allocm(x) := dom τ ← askm
τ ; return(x, τ)

lookupm : Addr → m(Val)

lookupm(α) := doσ ← getσ; return(σ(α))

extendm : Addr ×Val → m(1)

extendm(α, v) := dom σ ← getmσ ; putmσ (σ ⊔ [α 7→ v])

Reflecting Nondeterminism The ↑m reflects a set of values as a nondeterministic
computation within the monad m.

↑m: ∀A.P(A)→ m(A)

↑m ({x1, . . . , xn}) := returnm(x1)⟨+⟩m . . . ⟨+⟩mreturnm(xn)

Within the evaluator, it is used exclusively to reflect a set of results produced
by a projection function Eclo and Eif0 as a nondeterministic result within the
monadic computation.

3 Recovering an Abstract Semantics

To recover an abstract semantics, we once again instantiate the three parame-
ters of the interpreter: the value domain, the timestamp set, and the underlying
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V̂al := P({+, 0,−} ∪ Ĉlo) T̂ime := Call≤k Ĉlo := CloT̂ime

Ênv := Env T̂ime Ŝtore := StoreT̂ime,V̂al

Iint : Z→ V̂al Eif0 : V̂al → P(Bool)

Iint(i) :=


{−} if i < 0

{0} if i = 0

{+} if i > 0

Eif0 (v) := {true : 0 ∈ v} ∪ {false : − ∈ v ∨+ ∈ v}

Iclo : CloT̂ime → V̂al Eclo(v) := {c : c ∈ v}

Iclo(c) = {c} Eclo : V̂al → P(CloT̂ime)

tick : Call× Time → Time δ : IOp→ V̂al × V̂al → V̂al

tick(e, τ) := ⌊eτ⌋k δJ+K(v0, v1) := {i0 + i1 : i0 ∈ v0; i1 ∈ v1}
δJ−K(v0, v1) := {i0 – i1 : i0 ∈ v0; i1 ∈ v1}

Fig. 4. Value and time definitions for an abstract semantics

monad. Figure 4 presents the value and time abstractions. Following Darais et
al. [6], we use the sign abstraction for integers. To obtain a finite set of times,
we use the standard technique of limiting each time to at-most k call sites [22].
Because addresses are derived from times, this limiting has the effect of finitizing
the address space as well. Thus, it becomes possible (and probable) that the allo-
cator will be able to produce only addresses that are already in use. To maintain
soundness, the Abstracting Abstract Machines [24] methodology (and its suc-
cessor ADI [5]) stipulates that new data allocated at these addresses are joined
with the data already residing there. When these addresses are dereferenced,
the returned data must subsume both the old and new data. Hence, we use a
powerset representation in the abstract semantics to model nondeterminism.

What remains is to define a monad the abstract semantics with appropriate
effects. However, the control-flow sensitivity exhibited by the analyzer depends
on this definition. Hence, we will refrain from defining it until after introducing
our framework.

4 Path and Flow Sensitivity in the System Space

4.1 From Small-Step...

Darais et al. [6] observe that different control flow sensitivities induce different
system spaces of analysis. A path-sensitive analysis allows arbitrary relationships
between program points Point and fact bases B, yielding a system space of
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P(Point×B). On the other hand, a path- and flow-insensitive analysis associates
a fact base B with all of the program points, yielding a system space P(Point)×
B. Finally, a path-insensitive but flow-sensitive analysis associates a fact base B
with each program point, yielding a system space Point 7→ B.

Although apparently point-centric, these system spaces capture evaluation
paths through their constituent points implicitly: when each contained Point
is paired with its corresponding fact base, its successor is determined by the
transition relation, allowing one to reconstruct paths step by step.

Darais et al. use the observed connection between control-flow sensitivity
and the shape of the system space to systematize control-flow sensitivity within
a framework based on Galois transformers. A Galois transformer (GT) is a
transformer which augments the state space with a fact base paired with a
discipline of that fact base which induces a particular control-flow sensitivity.
Galois transformers have been dispatched to construct abstract machine-based
static analyzers whose control-flow sensitivity—and supporting system space—
varies with the particular Galois transformers used to build the analysis, and
the order in which they are applied.

4.2 ...to Big-Step

The shape of the system spaces produced by the GT framework is in large part
an artifact of it being built around small-step semantics. In such settings, pro-
gram behavior is typically modelled as a transition system of program states and
a finitization is typically used to ensure that an abstraction of that model is com-
putable [24]. Since the introduction of the GT framework, several frameworks
have been developed which utilize big-step semantics, which allows static ana-
lyzers to be formulated in terms of definitional interpreters. Rather than being
point- or state-centric, definitional interpreter-based static analysis is summary-
centric, with system spaces which resemble Config 7→ Result and record the
behavior of the stack-agnostic evaluation of each configuration Config .

It is not immediately clear how to realize each flavor of control-flow sensitivity
in this setting, nor how each sensitivity is reflected in the system space. We
now explore both in turn, first determining how the different flow sensitivities
manifest in this setting and then devising a state space that can accommodate
that meaning.

To determine how the flow sensitivities manifest, we return to the program in
Figure 1. However, instead of conceptualizing the execution of this program as a
path from point to point, we view it as the evaluation of labelled expressions and
subexpressions. In this view, the overall program is the let expression spanning
labels 1–7. Its bound expression spans labels 2–4 and its body, another let ex-
pression, spans labels 5–7. We now consider each kind of control-flow sensitivity
in turn and synthesize a system space which accommodates it.
Path-sensitive analysis Figure 5 presents a path-sensitive, summary-based anal-
ysis of the program. Each entry in the table consists of a summary which com-
prises the fact base at the commencement of the expression’s evaluation and the
resultant value and fact base at its conclusion. Evaluation begins at label 1 with
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Expression Path 1 Path 2

1 {N ∈ Z} {N ∈ Z}
⟨(1, 5), {N = 0, x = 1, y = 5}⟩ ⟨(4, 6), {N ̸= 0, x = 4, y = 6}⟩

2 {N ∈ Z} {N ∈ Z}
⟨1, {N = 0}⟩ ⟨4, {N ̸= 0}⟩

3 {N = 0}
⟨1, {N = 0}⟩

4 {N ̸= 0}
⟨4, {N ̸= 0}⟩

5 {N = 0, x = 1} {N ̸= 0, x = 4}
⟨(1, 5), {N = 0, x = 1, y = 5}⟩ ⟨(4, 6), {N ̸= 0, x = 4, y = 6}⟩

6 {N = 0, x = 1} {N ̸= 0, x = 4}
⟨5, {N = 0, x = 1}⟩ ⟨6, {N ̸= 0, x = 4}⟩

7 {N = 0, x = 1, y = 5} {N ̸= 0, x = 4, y = 6}
⟨(1, 5), {N = 0, x = 1, y = 5}⟩ ⟨(4, 6), {N ̸= 0, x = 4, y = 6}⟩

Fig. 5. Path-sensitive, summary-based analysis

an effectively-empty fact base, as does the evaluation of the first bound expres-
sion at label 2. The evaluation of the guard at label 2 splits the world, creating
a path for each outcome of its evaluation. The first path reaches label 3 with the
fact base {N = 0} and the guard holds. The consequent expression 1 is trivially
evaluated and 1 is returned from the conditional at label 3 and the containing
conditional at label 2. Crucially, the fact base itself, which encodes the path
travelled through evaluation, is returned with the result. Consequently, the fact
base of the evaluation of the body expression at label 5 is {N = 0, x = 1}. This
then is the fact base at the evaluation of the expression at label 6. Again, the
guard holds, and 5 is produced along with the fact base. At the evaluation of
the body expression at label 7, the fact base is {N = 0, x = 1, y = 5}. The eval-
uation of the second path branching from label 2 proceeds similarly, and results
in the fact base {N ̸= 0, x = 4, y = 6}. These fact bases are identical to the
ones produced in the path-sensitive, point-centric analysis of the same program,
as we would expect. The key is that the fact base must be threaded through
evaluation, being included in each evaluation configuration and each produced
result. This observation leads to a system space Config ×B 7→ P(Val ×B).

Flow-insensitive analysis A flow-insensitive analysis records within the fact base
facts that are true at every program point. Thus, the fact base is not associated
with any particular configuration or result, but all configurations and results. For
such an analysis, rather than proceed through evaluation sequentially, it makes
more sense here to consider the contribution that each part of the program makes
to the global fact base, given the contributions of the other parts. For example,
the evaluation of the guard at label 2 considers both outcomes and records each in
the same global fact base, which concludes merely {N ∈ Z}. Under such a coarse
approximation, the evaluations of the conditionals at labels 3 and 4 evaluate both
branches, as does the evaluation of the conditional at label 6. As in the point-
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c0

cn

...

c′0

c′n

c′0 ⊔ . . . ⊔ c′n c
...

cf0

cfn

Fig. 6. Flow-sensitive quantities in a summary-based analysis

centric analysis, the final fact base is {N ∈ Z, x ∈ {1, 2, 3, 4}, y ∈ {5, 6}}, and
the system space supporting this sensitivity is [Config 7→ P(Val)] × B with a
single fact base shared by the entire evaluation space.

Flow-sensitive analysis A flow-sensitive (but path-insensitive) analysis produces
a solution for every program point [14, 13, 11, 15, 4]. How do we effect this in a
setting that is summary- rather than point-centric? The idea is that flow sensi-
tivity with respect to the fact base occurs when all paths through a particular
program point contribute to that quantity. A summary encapsulates a path
segment—not a point—so we apply this idea to say that treatment of a fact
base is flow-sensitive when all paths through each path segment contribute to
that quantity along the segment. Because a summary provides a snapshot of the
beginning and the end of the segment, we record the fact base at the beginning
and end. That is, each configuration in the program is associated with two fact
bases, one recording the contribution of paths as they enter its evaluation and
another recording the contribution of paths as they exit. Figure 6 illustrates this
idea. The circular nodes represent configurations and the square nodes results.
If we have a set of configurations with flow-sensitive quantities c0, . . . , cn which,
after some evaluation, arrive at some configuration with flow-sensitive quanti-
ties c′0, . . . , c

′
n, then the flow-sensitive quantity at that configuration is their join

c′0 ⊔ · · · ⊔ c′n. If that configuration yields a result with flow-sensitive quantity
c, this quantity is propagated to each of the original evaluation paths which,
after some evaluation, yield results with flow-sensitive quantities cf0 , . . . , c

f
n, re-

spectively. Each configuration is associated with its constituent flow-sensitive
quantity and that of its result, identified by dashed edges in the diagram.

Using this idea, we now illustrate a flow-sensitive, summary-centric analysis
of the program in Figure 7. At the initial program configuration, the sole path
has an effectively empty fact base. This fact base is in effect as that path enters
evaluation of the let body on lines 2–4. The evaluation of the guard splits the
world so that the evaluation of the conditionals on lines 3 and 4 have entry
fact bases of {N = 0} and {N ̸= 0}, respectively. The evaluation of label 3’s
guard holds and its consequent expression 1 is evaluated with an entry and exit
fact base of {N = 0}, which is also the result of the overall conditional. The
evaluation of the conditional at label 4 proceeds similarly, as it yields 4 with
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Expression Entry Exit

1 {N ∈ Z} ⟨{(1, 5), (1, 6), (4, 5), (4, 6)},
{N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}}⟩

2 {N ∈ Z} ⟨{1, 4}, {N ∈ Z}⟩
3 {N = 0} ⟨{1}, {N = 0}⟩
4 {N ̸= 0} ⟨{4}, {N ̸= 0}⟩
5 {N ∈ Z, x ∈ {1, 4}} ⟨{(1, 5), (1, 6), (4, 5), (4, 6)},

{N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}}⟩
6 {N ∈ Z, x ∈ {1, 4} ⟨{5, 6}, {N ∈ Z, x ∈ {1, 4}}
7 {N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}} ⟨{(1, 5), (1, 6), (4, 5), (4, 6)},

{N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}}⟩

Fig. 7. A flow-sensitive, summary-centric analysis

a fact base of {N ̸= 0}. Now evaluation reaches a join point of these paths as
it exits the evaluation of the containing let expression and the resulting values
are joined to {1, 4} and resulting fact bases to {N ∈ Z}. Evaluation of the let
expression on at label 5 then proceeds with the fact base {N ∈ Z, x ∈ {1, 4}}.
Although evaluation of each branch of the conditional at label 6 occurs in a fact
base with refined knowledge ofN , the branch results are joined so that the overall
conditional produces the values {5, 6} and the fact base {N ∈ Z, x ∈ {1, 4}}.
The evaluation of the expression at label 7 then commences and completes with
the fact base {N ∈ Z, x ∈ {1, 4}, y ∈ {5, 6}}, precisely the fact base we obtained
in the flow-sensitive, point-centric analysis. The key to achieving flow sensitivity
in a summary-centric analysis was to maintain entry and exit fact bases for each
configuration evaluation, leading to the system space

[Config 7→ B]× [Config 7→ P(V al)×B].

5 Our Framework: Full Path and Flow Sensitivity in
Abstract Definitional Interpreters

Bulding on the intuition developed in the previous section, we now introduce our
framework for full path and flow sensitivity within summary-centric analysis.

5.1 State Spaces

We begin by describing the system space for each control-flow sensitivity and
then present a unified system space that exhibits all of the sensitivities. The
system spaces are parameterized by four types, U , V , W , and Y , which serve
the following roles:

1. U is a per-path component capturing an aspect of the continuation. That is,
it does not distinguish different paths which coincide from the point of cap-
ture. Examples of such components are environments, stack-based k-CFA/m-
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CFA-style context sensitivity [21], and stack address sets for abstract garbage
collection. We require that U is finite to ensure computability.

2. V is path-sensitive, distinguishing the path that was taken. Examples at this
sensitivity are per-configuration stores and traditional k-CFA-style context
sensitivity. We also require that V is finite to ensure computability.

3. W is flow-sensitive, capturing what is true of every path through a segment
of evaluation at the beginning and end of the segment. An example at this
sensitivity is flow-sensitive stores (a form of configuration widening [19]). We
require that W be a join-semilattice with no infinite ascending chains.

4. Y is flow-insensitive, capturing what is true of all paths at all points in
evaluation. An example at this sensitivity is a globally-widened store. We
also require that Y be a join-semilattice with no infinite ascending chains.

Because the type U is invariably associated with the control expression within
configurations, we define Control := Exp × U , which will feature in each sys-
tem space. Additionally, each system space includes a set of reachable Controls
(possibly attached to a path-sensitive quantity).

Path-sensitive system space The system space

Σps := P(Control × V )× [Control × V 7→ P(Val × V )]

supports path-sensitive treatment of V .

Flow-sensitive system space For a join-semilattice (W,⊑W ), the system space

Σfs := P(Control)× [Control 7→W ]× [Control 7→ P(Val)×W ]

supports f low-sensitive, path-insensitive treatment of W .

Flow-insensitive system space For a join-semilattice (Y,⊑Y ), the system space

Σfi := P(Control)× [Control 7→ P(Val)]× Y

supports f low-insensitive treatment of Y .
The unified system space

Σ := P(Control×V )×[Control×V 7→W ]×[Control×V 7→ P(Val×V )×W ]×Y

realizes all flow sensitivities in their respective types at once. Some components,
such as fact bases, can be distributed across these flow sensitivities within a
single analysis.

Hereafter, we will develop analyses using this unified system space. In §7,
we present a monad operating over this space and provide concrete types for U ,
V , W , and Y to instantiate the analysis. (We cannot proceed to that discussion
before discussing caching in §6.)
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5.2 Evaluation

Within our formalization, we assume a configuration-centric evaluation function

execm,Config,Val
eval : (Config → m(Val × V ))→ Config → m(Val × V )

which (as suggested by the type) is open-recursive, so that all apparently recur-
sive calls are intercepted by the functional argument, and which is parameterized
by a monad m : Type → Type, a configuration set Config , and a value set Val .
We demonstrate in §7 how to obtain such a function from evalm.
Monotonicity condition In this work, we rely on the assumption that, for a fixed
m, Config , and Val , execm,Config,Val

eval is monotonic with respect to its parameters,
provided its functional argument is monotonic with respect to its parameters.

5.3 Program Meaning

A system space definition does not itself enforce a particular sensitivity on any
given component but is only reflective of it. In this section, we define the meaning
of these sensitivities by formally defining when an element of the system space
exhibits them.

These sensitivities are defined relative to a program evaluation that treats all
components path-sensitively. To support this, we define the set of configurations
Configps and the set of results ResultVal

ps , each of which includes all components.

Configps := Control × V ×W × Y ResultVal
ps := P(Val × V ×W × Y )

We instantiate execm,Config,Val
eval with a type constructor PSVal (for path-

sensitive) defined

PSVal : Type → Type

PSVal(a) := P(a×W × Y )× P(Configps)× [Configps 7→ ResultVal
ps ]

so that

PSVal(Val × V ) = ResultVal
ps × P(Configps)× [Configps 7→ ResultVal

ps ].

To reduce notational overhead, we will henceforth omit the Val superscript, but
PS , Resultps , and execm,Config

eval remain parameterized by a Val domain.
The motivation for this definition of PS is to use the open-recursive feature

of execPS
eval (i.e. execm,Config,Val

eval instantiated with PS and Configps) to instru-
ment evaluation to record reached configurations and returned results within
the set and cache components introduced by PS . To achieve this, we first define
execPS

cache , which intercepts an execution and records the encountered configura-
tion and its results.

execPS
cache : (Configps → PS (Val × V ))→ Configps → PS (Val ×B)

execPS
cache := λexec.λς.(∅, {ς}, [ς 7→ r]) ⊔ (r,R, $) where (r,R, $) := exec(ς)
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This function evaluates a given configuration ς using its functional argument
exec and intercepts the resultant triple containing the evaluation result r, set of
reachable configurations R, and cache $. It joins this triple with one in which ς
is resident of the reachable configuration set and ς is associated with r in the
cache. The join operation distributes componentwise as is defined as set union
for the result and reachable configuration sets.

We compose execPS
cache with execPS

eval to define execPS
path , which evaluates a

configuration and caches its result, as follows.

execPS
path : (Configps → PS (Val × V ))→ Configps → PS (Val × V )

execPS
path := λexec.execPS

cache(exec
PS
eval(exec))

Using execPS
path , we define the meaning JprKeval of a program pr with respect to

the evaluation function execPS
eval .

Definition 1 (Program Meaning). The meaning JprKeval of a program pr
with respect to an evaluation function execeval is given by the following.

JprKeval : P(Configps)× [Configps 7→ Resultps ]

JprKeval :=
⊔
n≥0

π2×3((exec
PS
path)

n(⊥exec)(Ips(pr)))

where Ips(pr) := (pr , u0, v0,⊥W ,⊥Y ); ⊥exec is the function λς.(∅, ∅,⊥) produc-
ing the empty result, empty reachability set, and empty cache; and π2×3 projects
the second and third components from a triple. Thus, a program meaning with
respect to an evaluation function is a pair of a set of reachable configurations
and a map from configurations to results.

5.4 Analysis Validity

We now define the validity of an analysis with respect to a program meaning.
Per §5, an analysis is an element (R, $w, $, y) : Σ of the unified system space
where

– R is a set of reachable configurations (which, in contrast to configurations
in a program meaning, do not contain path-insensitive components),

– $w maps configurations to the flow-sensitive quantity at evaluation start,
– $ maps configurations to a pair of their results and the flow-sensitive quantity

at evaluation end, and
– y is the flow-insensitive quantity.

Definition 2 (Analysis Validity). An analysis (R, $w, $, y) is valid for a pro-
gram pr, written (R, $w, $, y) ⊨eval pr, if, for JprKeval = (Rps , $ps), for each
ς ∈ Rps , where ς = (e, u0, v0, w0, y0) and letting ⌊ς⌋ = (e, u0, v0), and for each
(v, v1, w1, y1) ∈ $ps(ς),

1. ⌊ς⌋ ∈ R,
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2. w0 ⊑W $w(⌊ς⌋),
3. ({(v, v1)}, w1) ⊑P(Val×V )×W $(⌊ς⌋),
4. y0 ⊑Y y, and
5. y1 ⊑Y y.

Condition 1 ensures that the analysis considers the configuration reachable. Con-
dition 2 ensures that the flow-sensitive component at entry is included; condition
3 ensures that each result and flow-sensitive component at exit is included. Con-
ditions 4 and 5 ensure that the flow-insensitive quantity is included as manifest
at entry and exit, respectively.

6 A Caching Algorithm

In this section, we present a caching algorithm which computes a valid analysis
using standard Kleene iteration.

By design, this algorithm is not clever (and is correspondingly inefficient).
Each iteration, it visits the configurations encountered in the previous iteration.
At the visit of each configuration, it records its evaluation behavior, including
the configurations it encounters and the results it produces. At the outset, only
the initial program configuration is considered reachable.

First, we define the sets of configurations Config full and results Result full
used by the analysis.

Config full := Control × V Result full := P(Val × V )

We then instantiate execm,Config
eval with the type constructor Fullnaive defined

Fullnaive : Type → Type

Fullnaive(a) := W → Y → (Config full 7→ Result full ×W )

→ P(a)×W × Y × P(Config full)× (Config full 7→W ).

We then define a function execFullstub as

execFullstub : Config full → Fullnaive(Val × V )

execFullstub(ς)(w)(y)($) := ($(ς),⊥Y , {ς}, [ς 7→ w]).

The function execFullstub is not defined in an open-recursive style, so we can pass it
to execFulleval to produce an execution function as follows.

execFull : Config full → Fullnaive(Val × V )

execFull := execFulleval(exec
Full
stub)

Under these definitions, when execFull makes an (apparently) recursive call, the
configuration is recorded as reachable, its result is pulled directly from the cache,
and the flow-sensitive quantity is associated with the configuration. The flow-
insensitive component Y is included in the output so that execFulleval has the op-
portunity to register a contribution during evaluation (such as writing to the
store).
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6.1 An Analysis Transfer Function

With execFull in hand, we define the transfer function G which uses it to eval-
uate each reachable configuration in the context of the provided flow-sensitive
and result cache and flow-insensitive quantity as follows (note that the set com-
prehension is broken over two lines)

G : Σ → Σ

G(R0, $
w
0 , $0, y0) :=

⊔
{(R, $w, [ς 7→ r], y) :

ς ∈ R0, (r, d,R, $w) := execFull(ς)($w0 (ς))(y0)($0)}.

Because the transfer function G does not seed the reachable set with the
initial configuration, it alone cannot be iterated to compute the fixed point. To
rectify this, we define the full transfer function F in terms of G and which ensures
that the initial configuration is considered reachable as follows

F : Σ → Σ

F (R0, $
c
0, $0, d0) := G(R0, $

w
0 , $0, y0)⊔

({Ifull(pr)},⊥Config full 7→W ,⊥Config full 7→Result full×W ,⊥Y )

where Ifull(pr) := (pr , u0, v0).

6.2 F Yields a Valid Analysis

We now show that a fixed point of F is a valid analysis. First, we establish a
few lemmas.

Lemma 1. Σ has no infinite ascending chains.

It follows immediately from the fact that no component of Σ has any infinite
ascending chains, which in each case holds by assumption or inspection.

Lemma 2. G is monotonic in R, $w, $, and y.

G is monotonic in each component by definition and by the monotonicity
condition of the evaluation function in §5.2.

Lemma 3. This caching algorithm is computable.

We obtain this from the Kleene fixed point theorem as follows: F is com-
putable so each iteration to compute the ascending chain is computable. F is
monotonic and the unified state space Σ is a directed-complete partial order, so
F has a least fixed point which Kleene iteration yields.

Theorem 1. If (R, $w, $, y) is a fixed point of F for program pr with respect to
some execFulleval , then (R, $w, $, y) ⊨eval pr.

The proof is similar to the proof of Darais [7]. One difference is that Darais
defines their semantics as a big step relation whereas we have defined our se-
mantics as a function. However, the key behaviors of reachability and evaluation
are consistent across both semantics. Accordingly, the proof itself proceeds by
mutual induction of reachability and evaluation over the call trace.
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7 Completely Instantiating the Abstract Semantics

In §3, we parameterized the definitional interpreter with an abstract value do-
main and timestamp set. Armed with a framework of full path and flow sen-
sitivity, we are ready to complete its parameterization with a monad instance.
We define this instance in two layers: an instance for the caching algorithm type
transformer Fullnaive of §6—which we abbreviate to Full that insulates access
to U and V and an instance on top of it which exposes access to U and V .

Once this instance is defined, we instantiate the control-flow sensitive param-
eters to obtain an actual analyzer.

7.1 Caching Monad Instance

We first define a monad instance for Full from §6 with state and nondetermism
effects in Figure 8. To returnFull a value injects it into a singleton set, returns

returnFull : ∀A.A→ Full(A)

returnFull(x)(w)(y)($) := ({(x}, w, y, ∅,⊥)

bindFull : ∀A.∀B.Full(A)→ (A→ Full(B))→ Full(B)

bindFull(cmp)(f)(w)(y) := (∅,⊥W ,⊥Y , R, $) ⊔ f(x1)(w
′)(y′) ⊔ · · · ⊔ f(xn)(w

′)(y′)

where ({x1, . . . , xn}, w′, y′, R, $) := cmp(w)(y)

⟨+⟩Full : ∀A.Full(A)× Full(A)→ Full(A)

cmp0⟨+⟩
Fullcmp1 := λw.λy.cmp0(w)(y) ⊔ cmp1(w)(y)

mzeroFull : ∀A.Full(A)

mzeroFull(w0)(y0) := (∅,⊥W ,⊥Y , ∅,⊥)

getFullW : Full(W ) getFullY : Full(Y )

getFullW (w)(y) := returnFull(w)(w)(y) getFullY (w)(y) := returnFull(y)(w)(y)

putFullW : W → Full(1) putFullY : Y → Full(1)

putFullW (w)( )(y) := returnFull(⟨⟩)(w)(y) putFullY (y)(w)( ) := returnFull(⟨⟩)(w)(y)

Fig. 8. A monad instance for Full with state and nondeterminism effects

the provided state w and y, and produces an empty reachability set and flow-
sensitive cache. To bindFull a computation to a function runs the computation
and feeds each result to the function, joining the results. The reachability set
and flow-sensitive cache of the computation’s execution are included in the final
result. The nondeterministic choice between two computations runs both and
joins their results; a failing computation returns no results. The state effects for
W and Y are standard.
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γFulleval : (Exp→ Fulleval(V̂al))→ Ĉonfig → Full(V̂al × V )

γFulleval (eval)(e, u, v) := eval(e)(u)(v)

αFulleval : (Ĉonfig → Full(V̂al × V ))→ Exp→ Fulleval(V̂al)

αFulleval (exec)(e)(u)(v) := exec(e, u, v)

Fig. 9. The γFulleval /αFulleval conversion pair for the caching and evaluation monads

Lemma 4. The instance for Full satisfies the monad, nondeterminism, and
state laws.

Adherence to the laws follows from the definitions.

7.2 Evaluation Monad Instance

We now define Fulleval , a type transformer in terms of Full .

Fulleval : Type → Type

Fulleval(a) := U → V → Full(a× V )

Fulleval admits a straightforward monad instance, which we define in an accom-
panying technical report [8]. Whereas Full incorporates the components U and
V in a way oblivious to the underlying caching, Fulleval exposes them. This two-
layered approach insulates the caching from evaluation, allowing us to change
the caching strategy without disturbing this evaluation definition. In Figure 9,
we define the γFulleval/αFulleval pair to convert between these two monads.

7.3 An Instantiated Analyzer

We now put all of the pieces together to produce a concretely-instantiated ana-
lyzer. We define configurations and results generically as follows.

Ĉonfig := Control × V R̂esult := P(V̂al × V )

The final requirement for the caching algorithm is an evaluation function
from configurations to results. We use γFulleval and αFulleval to wrap the evaluation
function instantiated with Fulleval as follows.

execFull : (Ĉonfig → Full(V̂al × V ))→ Ĉonfig → Full(V̂al × V )

execFull(exec) := γFulleval (eval
Fulleval (αFulleval (exec)))

This is of precisely the type required by the caching algorithm and we can now
select the control-flow sensitivity of analysis components by how we instantiate
U , V , W , and Y . The generic evaluation function evalm expects a per-path
environment and timestamp, which dictates that the per-path component U

must be instantiated with Ênv × T̂ime but we can select the sensitivity of the
store.
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Path-sensitive analysis We select path sensitivity for the store by instantiating

V as Ŝtore and W and Y as the unit domain.

U = Ênv × T̂ime V = Ŝtore W = 1 Y = 1

What remains is to define the accessors of configuration components, such as
environments and stores, in terms of the monadic effects, which we provide in
an accompanying technical report [8].

Flow-sensitive analysis We select flow sensitivity for the store by instead instan-

tiating W as Ŝtore and V and Y as the unit domain.

U = Ênv × T̂ime V = 1 W = Ŝtore Y = 1

An accompanying technical report [8] contains an analysis treating the store
flow-sensitively using the caching algorithm presented in §6.

7.4 Semantics Independence

As the instantiation in this section demonstrates, our framework requires of
the semantics only (1) a functional interface with an open-recursive type (2)
that is monotonic in each of its arguments. Beyond these requirements, the
analyzer makes no assumptions about the analyzed language, and in that sense
the framework offers semantics independence.

As currently formulated, this function may require the analyzer to instantiate
the timestamp—which offers context sensitivity—as a per-path or path-sensitive
quantity. If our framework were extended to include context sensitivity in the
purview of control-flow sensitivity, as Kim et al. [17] do in their framework, the
evaluation function would place effectively no constraints on the framework. (We
discuss this work further in §10.)

8 Accounting for Abstracting Definitional Interpreters

We have used monads extensively to demonstrate our framework in action, an
approach inherited from the work on modular abstract interpreters on which
it is based [6]. In fact, Darais et al. [6] systematize the construction of these
monads using monad transformers [18] which correspond to analogous “system
space transformers” called Galois transformers.

Galois transformers (GT) account for the relationship between program points
and analysis components—and therefore the control-flow sensitivity with which
the analysis treats them—through analysis effects. To wit, the path-sensitive sys-
tem space P(Point ×B) is understood as the application of a state transformer
·×B followed by the application of a nondeterminism transformer P(·). The flow-
insensitive system space P(Point) × B is understood as the application of the
same transformers but in the opposite order. The path-insensitive/flow-sensitive
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system space Point 7→ B is produced by a single “flow-sensitive” transformer
· 7→ B. The GT framework is designed so that the resulting analysis actually
exhibits the sensitivity suggested by the induced system space and that the
other aspects of its definition remain independent. The result is that one can
alter the control flow sensitivity merely by swapping out a stack of system space
transformers.

Later, Darais et al. [5] combined the systematic approach to analysis deriva-
tion pioneered by the Abstracting Abstract Machines (AAM) framework [24] and
the systematic approach to analysis construction introduced by the GT frame-
work into the Abstracting Definitional Interpreters (ADI) framework for static
analyzers for higher-order languages based on definitional interpreters. However,
definitional interpreters naturally lead to summary-based analyses whose state
spaces differ from program point-based analyses. Consequently, analyses in the
ADI framework are constructed using monad transformers just as they are in
the GT framework, but they do not offer the same sensitivities that the GT
framework does.

For example, we can apply state and nondeterminism transformers to a base
system space of Control 7→ Val . Applying them in one order yields Control×B 7→
P(Val × B), a path-sensitive state space, whereas applying them in the other
yields Control ×B 7→ P(Val)×B, a state space which allows arbitrary relations
between fact bases and configurations but shares a fact base among the results,
which we will term result widening.

Result widening is not flow-insensitive, as the GT framework delivers in its
native setting, nor is it flow-sensitive, because of the increased associativity be-
tween configurations and fact bases. We can situate result widening in a hier-
archy of control-flow sensitivities seen in Figure 10. Result widening is not as

Control ×B 7→ P(Val ×B) path sensitivity

Control ×B 7→ P(Val)×B result widening

[Control 7→ B]× [Control 7→ P(Val)×B] flow sensitivity

[Control 7→ P(Val)]×B flow insensitivity

Fig. 10. A hierarchy of control-flow sensitivities including result widening

precise as full path sensitivity but not as imprecise as full flow sensitivity (and
path insensitivity), since the fact base remains a distinguishing component of
configurations.

We can account for result widening in our framework by adding the compo-
nent Z to our unified system space as follows. Letting Con := Control × V , we
define

Σrw := P(Con ×Z)× [Con ×Z 7→W ]× [Con ×Z 7→ P(Val ×V )×W ×Z]×Y
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and provide analyses access to Z through yet another state effect.

9 Implementation

We have implemented the framework with three caching algorithms: the näıve
caching algorithm presented in § 6, the coinductive caching algorithm of ADI [5],
and a caching algorithm based on a dependency-tracking fixed point solver cast
as a monad [25]. We verified that each algorithm produced the same results.

We do not set out here to empirically establish the performance characteris-
tics of the framework but to instead demonstrate that

1. the framework is readily deployed within an implementation,
2. the framework’s conceptualization of control-flow sensitivity is robust enough

to be implemented under a variety of different caching algorithms, and
3. the size of the state spaces within a big-step conceptualization of the different

sensitivities matches intuitions developed in small-step settings.

Our analysis is a 0CFA with abstract garbage collection [20]. To implement
abstract garbage collection in a definitional interpreter setting, we use the tech-
nique of Darais et al. [5] wherein each configuration has a per-path component
which includes the set of stack addresses.

Although the presentation of our framework uses monads, we implemented
our framework in a language with no explicit support for monads. In fact, our im-
plementation, closely following the presentation here, uses no more than higher-
order functions.

For each caching algorithm and control-flow sensitivity, we deployed the anal-
ysis on seven programs. Six of the programs are small programs with patterns
that yield different behaviors under different sensitivities. The seventh program
is a SAT solver and is the most substantial program on which we deployed the
analysis. We timed 100 iterations of the analysis on each program; Figure 11
plots and analyzes the results.

10 Related Work

The Galois Transformers framework of Darais et al. [6] provides the means to
construct an analyzer using monad transformers to get language-independent
flow sensitivity properties and soundness theorems by construction. The Ab-
stracting Definitional Interpreters framework [5] used monad transformers in the
same way, obtaining soundness by construction, but exhibiting a limited range
of flow sensitivity with that mechanism. This work offers a framework which re-
stores the full range of flow sensitivity in the setting of definitional interpreters,
offering those sensitivities in concert with the higher control precision defini-
tional interpreters offer. It does not hold the modular construction via monad
transformers as essential, though it is easy to see where monad transformers
would aid the construction of the monads. However, where Galois transformers
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Fig. 11. This plot presents benchmark results for seven programs at three sensitivites
each computed by three caching algorithms. The y-axis is log-scale. We can see two
trends within these results. First, for a given control-flow sensitivity, the analysis time
depends on the caching algorithm used, with the näıve algorithm taking the most
time and a dependency-tracking algorithm taking the least. Second, the analysis time
decreases as the store moves from path sensitivity to insensitivity and again as it moves
from flow sensitivity to flow insensitivity. These are the same trends that arise across
algorithms and control-flow sensitivities in the small-step setting.

allow additional components at a particular sensitivity to be added, analyzers in
this framework manage exactly one component at each sensitivity, which requires
the entire analysis instantiation to cooperate.

Hardekopf et al. [15] also offer a means to separate the flow sensitivity of the
analysis from other aspects of its specification by casting it as a widening opera-
tor. Like Darais et al. [6], they present their work in a setting where continuations
are reified within the semantics and argue that abstracting control requires such
a handle on the control. They further argue that semantics which do not offer
this handle, such as big-step semantics, therefore offer “no way to abstract and
over-approximate control flow”. In this work, we have argued that achieving dif-
ferent sensitivities in this setting is possible, and provided an exhibition of flow
sensitivity tailored to the summary-oriented nature of the semantics.

Kim et al. [17] describe a generic sensitivity framework which expresses the
natural disjunctive reading of a sensitive analysis as a conjunctive reading where
each conjunct is predicated by preconditions which must hold for the property to
obtain. This alternative reading allows many properties to be treated indepen-
dently while avoiding a Cartesian explosion of states that a disjunction reading
produces. Our framework provides a similar reading where each configuration
acts as a precondition for a flow-sensitive quanitity or result to obtain. This
framework essentially expresses value sensitivity which subsumes path sensitiv-
ity by predicating properties on the boolean values selecting each branch. Our
framework provides fact-base associativity which manifests path sensitivity in a
similar way—admitting distinctions between particular program quantities—but
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work is needed to formally compare the expressive power of each. This frame-
work is state-based, providing a description of the reachable states in terms of a
conjunction of implications. In contrast, our framework is summary-based, pro-
viding a description of evaluations in terms of a disjunction of configurations
and their results. Our framework is also able to handle higher-order behavior, a
capability not discussed in this work.

Handjieva and Tzolovski [12] present a technique to increase the precision of
a static analysis by lifting the abstract domain to finite sets of abstract proper-
ties labelled by some residue of control flow. The soundness of this work relies
on the ability to succinctly characterize subgraphs of the control-flow graph by
their topology, which is demonstrated for explicit, static control-flow graphs.
Our framework operates without knowledge of the control flow graph in which
control-flow actions are signalled by returns and inner recursive calls of a se-
mantic function. As with Kim et al., this work is presented over a first-order
language for a point-based analysis.

Bourdoncle [1] presents a technique to derive more-sophisticated abstract
interpretations from simpler ones that are responsive to the program, in part by
associating control points and abstract values within the analysis. This approach
leads to a similar state space to a path-sensitive analysis in our framework.
Moreover, this work allows for broad notion of control point which, translated
to our framework, includes functions of the stack, environment, and timestamp.

11 Discussion and Future Work

The framework we have presented computes an account of program behavior that
(1) requires only a functional interface to the language semantics, (2) allows the
control-flow sensitivity of different analysis elements to be adjusted independent
of this semantics, and (3) is in terms of summaries of evaluation.

Although this framework is heavily inspired by Galois transformers, it offers
only a semantics-independent mechanism to adjust control-flow sensitivity in a
summary-based setting, and not a genuine analysis transformer which introduces
an analysis component to be treated with a particular sensitivity. Future work
will develop genuine Galois transformers for the definitional interpreter setting.

Unlike other frameworks [17, 15], our framework instantiates the notion and
degree of context sensitivity up front, and requires the cooperation of the seman-
tics. Future work will address incorporating context sensitivity as a parameter
of the framework that disturbs neither the functional interface to the semantics
nor summary-based result of analysis.

Finally, the functional interface to the semantics provides very coarse insu-
lation from semantic details to other aspects of the analysis, but this coarseness
limits the degree to which the analysis can be tuned to a particular semantics.
Future work is to explore the tailoring facilities of different semantic interfaces.
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